
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaDOS File System
17

377

he user doesn't see many of the tasks that DOS performs. This is why some users underestimate the complexity of DOS.
For example, DOS requires many data structures for handling a mass storage device, although this is not always
realized by the user. The file system must perform many steps before executing even small tasks, such as copying files

or searching for a file on the hard drive.

Disk drives recognize tracks, sectors, and read/write heads instead of files and subdirectories. Therefore, DOS's file system
addresses all available mass storage devices at both physical and logical levels. A file system of this type consists of a series
of data structures, which describe the capacity and contents of a disk drive. In this chapter we'll discuss how the DOS file
system is designed and how it works.

Basic Structure Of The File System

The volume is the basis of the DOS file system. From the user's viewpoint, DOS addresses mass storage devices as volumes.
Each individual volume is assigned a letter. Floppy disk drives are identified by the letters A and B, while the letters C

or D usually identify a hard drive. Although a hard drive can be divided into multiple volumes, a floppy disk drive can consist
of only one volume.

DOS Versions 3.3 and lower limited volume size to a maximum of 32 megabytes. Therefore, any hard drives with capacities
over 32 megabytes were divided into multiple volumes. In this chapter we explain how DOS Version 4.0 broke the 32
megabyte barrier.

Every DOS volume has its own structure, regardless of whether it's intended for diskettes or hard media. The size of the storage
media isn't relevant to the structure because it only affects the number of individual data structures required to manage the
volume.

Volume label names

Although not required, each volume can be assigned a volume label name when created. The DIR command lists volume label
names when they're available. Each volume has its own root directory, which can contain multiple subdirectories and files.
These subdirectories and files can be maintained and manipulated by using one or more of the interrupt 21H functions.

Sectors

DOS subdivides each volume into a series of sectors organized sequentially. Each sector contains a specific number of bytes
(usually 512) and is assigned a consecutive logical sector number, beginning with sector 0. A 10 megabyte volume contains
20,480 sectors, consisting of logical sectors 0 to 20,479. DOS cannot control the physical arrangement of the sectors. This
is controlled by the device driver, which mediates between the volume and DOS. The device driver's distribution of logical
sectors (organized or not) is unimportant. It's only important the device driver clearly differentiates between logical and
physical sectors.

Since DOS API function calls with interrupt 21H are directed to files instead of individual sectors, DOS converts these file
accesses into sector accesses. To do this, DOS uses the volume's directory structure and a data structure known as the FAT
(File Allocation Table).

The following table shows the basic structure of a mass storage device:

17. The DOS File System

T

17. DOS File System378

Mass storage device structure

0 Manufacturer's name, device driver, boot routine
First file allocation table (FAT)
One or more copies of FAT
Root directory with volume label names
Data register for files and subdirectories

As we mentioned, every volume is divided into areas containing the various DOS data structures and individual files. The
FORMAT command creates these data structures when you format a disk. Since the size of the individual areas can differ
depending on the type of mass storage device (and the manufacturer), every volume contains a boot sector.

The Boot Sector

The boot sector contains all the information required to access the different areas and data structures. DOS creates this
sector during disk formatting. Boot

sectors always have the same structure and
are always located in sector 0 so DOS can
find and interpret it properly. The table on
the right lists the layout of the boot sector.

The term "boot sector" is used because
DOS "boots" (i.e., starts) from this sector.
Since DOS usually isn't stored in permanent
PC memory (ROM), it's loaded and started
from disk. After you switch on the
computer, the BIOS takes over system
initialization. It loads physical sector 0
(not logical sector 0) of the floppy disk or
hard drive into memory. Since device
drivers aren't in memory, the BIOS checks
physical sector 0 for information. It then
loads the boot information from that sector.
Once it completes its work, the BIOS starts
execution at address 0.

The boot sector always contains an
assembly language JUMP instruction at
address 00H. Execution of the boot sector's program code begins at this address. After execution, the program continues at
a location further into the boot sector. This instruction can be either a normal jump instruction or a "short jump." The field
for this jump instruction is 3 bytes long, but a "short jump" only requires 2 bytes. Therefore, a NOP (No Operation) instruction
always follows the "short jump" to fill in the extra byte. As its name suggests, this NOP instruction doesn't do anything.

A series of fields, which contain certain information about the organization of the media, follow. The first field is 8 bytes long
and contains the manufacturer's name, where the medium was formatted, as well as the DOS version number that performed
the formatting. The field may also contain the name of a software manufacturer (e.g., if a program such as PCTools formatted
the volume).

The next fields contain the physical format of the media (i.e.,
the number of bytes per sector, the number of sectors per
track, etc.) and the size of the DOS data structures stored on
the medium. The physical device information is needed
when using the interrupt 13H BIOS functions. These fields

Boot sector layout

Address Contents Type

00H Jump to boot routine (E9xxx or EBxx90) 3 bytes

03H Manufacturer's name and version number 8 bytes

0BH Bytes per sector 1 word

0DH Sectors per cluster 1 byte

0EH Number of reserved sectors 1 word

10H Number of FATs 1 byte

11H Number of entries in root directory 1 word

13H Number of sectors in volume 1 word

15H Media descriptor 1 byte

16H Number of sectors per FAT 1 word

18H Sectors per track 1 word

1AH Number of read/write heads 1 word

1CH Number of hidden sectors 1 word

1EH-1FFH BOOT ROUTINE

NOTE

Some sources of undocumented DOS structures state
the BPB is a parameter table, which can be accessed
by using Get Service Data, instead of part of the boot
sector. These sources imply the boot sector
information is only part of the BPB.

S
ec

to
r

nu
m

be
r

17. DOS File System 379

are called the BIOS parameter block (BPB). DOS uses this information for various tasks.

Three additional fields, providing other volume information to the device driver, follow the BPB. However, these fields aren't
used directly by DOS.

Bootstrap

Next is the bootstrap routine, to which the jump instruction branches at the beginning of this boot sector. This routine handles
the loading and starting of DOS through the individual system components (see Chapter 3).

Several reserved sectors may follow the boot sector. These sectors can contain additional bootstrap code. The numbers of these
sectors are recorded in the BPB in the field starting at offset address 0EH. This field terminates the boot sector; a 1 in this
field indicates that additional reserved sectors don't follow the boot sector. This applies to most PCs, because no versions of
DOS have required a bootstrap loader that cannot fit into the first boot sector.

The File Allocation Table (FAT)

DOS must know which sectors of the volume are still available before it can add new files or enlarge existing files. This
information is contained in a data structure called the FAT (File Allocation Table), located immediately next to the

media's reserved area. Each entry in the FAT corresponds to a certain number of logically contiguous sectors called clusters,
on the media. Location 0DH of the boot sector specifies the number of sectors per cluster as part of the BIOS Parameter Block.
Only powers of 2 (1, 2, 4, 8, etc.) are acceptable values. On an XT hard drive, this location contains the value 8 (8 consecutive
sectors form a cluster). AT, 386, and 486 hard drives have only 4 sectors per cluster.

As the table on the right shows, the number of sectors comprising a
cluster depends on the storage medium.

Despite the values in the previous table, a formatting utility, such as
FORMAT, isn't limited to these cluster values. This applies particularly
to volumes containing more than 32 megabytes. DOS Versions 4.0 and
higher accommodate larger volumes by adding clusters. A volume
larger than 32 megabytes quickly exceeds the 65,536 limit for clusters.
So, the capacity of the file system can be extended at will, without
changing the current structure, by including more sectors per cluster.

The following table (lower right) shows the clustering used by DOS Version 4.0 for volumes larger than 32 megabytes and
up to 2 Gigabytes.

This clustering allocates more memory to the last
cluster of a file. This cluster is filled only when its
size represents a multiple of the cluster size.

File fragmentation

The idea of joining several sectors into a cluster is
based on the logic used by DOS to write files to a medium. Instead of selecting adjoining sectors for file storage, DOS
fragments (disassembles) the file so the various pieces can fit into the available sectors.

The following explains the reasons why DOS fragments the file. Users are constantly creating and deleting files. If you start
with an empty volume, new files and their respective clusters are stored in sequence. However, when you delete a file, a gap
may develop between two sectors. DOS doesn't adjust the clusters on a volume because this process requires too much time.
This is especially true for larger volumes. So, DOS places new files in the gaps created when the older files were deleted. If
the entire file could be stored in one of these gaps, it could be kept in one contiguous unit. However, this usually doesn't happen.
As a result, DOS divides files and fits them into available gaps.

Volume and Cluster sizes of DOS 4.0

Volume size (megabytes) 128 256 8K 16K 32K

Cluster size 2K 4K 8K 16K 32K

Sectors per cluster 4 8 16 32 64

Sectors per cluster

Device
Sectors per

cluster

Single sided disk drive 1

Double sided disk drive 2

AT hard drive 4

XT hard drive 8

17. DOS File System380

This process slows file access because the read/write head must be repositioned after almost every read function. To avoid
an excessive disassembly of the file, DOS gathers several sequential sectors on the media into a cluster. This ensures that
at least the sectors of a cluster contain a portion of a file. If DOS didn't use clusters, a file of 24 sectors could be stored in
numerous sectors, which would require the read/write head to be positioned a maximum of 24 times to read the entire file.
The cluster principle saves a lot of time, since a file comprised of 4 sectors per cluster is stored in 6 clusters and the read/
write head must be repositioned only 6 times.

However, there is a problem with this process. Since a file is assigned at least one cluster, some storage space is wasted.
Consider the AUTOEXEC.BAT file, which is usually no longer than 150 bytes. Normally, this file could be stored on a single
sector (and still waste almost 400 bytes). However, AUTOEXEC.BAT occupies a cluster of 2048 bytes on an AT, which
wastes more than 1.5K of hard drive space.

Disk optimizing programs, such as BeckerTools Disk Optimizer or DEFRAG in MS-DOS 6.x, solve this problem by
reorganizing the medium and storing all the files in consecutive clusters.

The FAT layout

Now let's return to the file allocation table. The size of individual entries in the FAT under DOS Versions 1.0 and 2.0 is 12
bits. For DOS Versions 3.0 and up, the size of an entry in the FAT depends on the number of clusters. If a volume has more
than 4,096 clusters, then each FAT entry is 16 bits; otherwise each FAT entry is 12 bits.

A 12-bit FAT permits control of 4,096 clusters, which corresponds to 4 sectors per cluster, providing a total of 8 megabytes.
Although this amount could be expanded by adding more sectors to a cluster, such an expansion isn't recommended.
Therefore, you'll find only 16-bit FATs on newer hard drives of 20 megabytes and up, thus allowing the 65,536 maximum
of addressable clusters.

The number of bits per FAT entry must be determined before file access. The information in the BIOS parameter block is
used for this purpose. The total number of sectors in the volume can be found starting at location 13H. Divide this number
by the number of sectors per cluster to obtain the number of clusters in the volume.

The first two entries of the FAT are reserved and aren't related to the cluster assignment. Depending on the sizes of the
individual entries, 24 bits (3 bytes) or 32 bits (4 bytes) can be available. The first byte contains the media descriptor, while
the value 255 fills in the other bytes. The media
descriptor, which is also stored in address 15H of
the BPB, indicates the device the media uses (e.g.,
a diskette). The table on the right shows which
codes are possible.

Perhaps you're wondering why the individual
entries of the FAT are 12 or 16 bits wide if all they
do is show whether a cluster is occupied. This
could have been done with one bit; the bit could
contain 1 when the cluster is occupied and 0 if the
cluster is available.

The entries in the FAT help mark the available
clusters and identify the individual clusters
containing a specific file. The directory entry of a
file tells DOS which cluster holds the first sectors
of a file. The number of this cluster corresponds to
the number of the FAT entry belonging to it. In this
entry is the number of the cluster containing the
next sector of file data. This search continues until the last cluster of a file has been reached.

However, the cluster numbers refer to the beginning of the data structure rather than the beginning of the volume (more on
this later). For example, assume the beginning of a file resides in the fourth cluster of the volume. You must read the fourth

Media descriptor codes

Code Device Description

F0H 3.5" disk drive 2 sides, 80 tracks, 18 sectors per track

F8H Hard drive Varies

F9H 5.25" disk drive
 3.5" disk drive

 2 sides, 80 tracks, 15 sectors per track
 2 sides, 80 tracks, 9 sectors per track

FAH 5.25" disk drive
 3.5" disk drive

 1 side, 80 tracks, 8 sectors per track
 1 side, 80 tracks, 8 sectors per track

FBH 5.25" disk drive
 3.5" disk drive

 2 sides, 80 tracks, 8 sectors per track
 2 sides, 80 tracks, 8 sectors per track

FCH 5.25" disk drive 1 side, 40 tracks, 9 sectors per track

FDH 5.25" disk drive 2 sides, 40 tracks, 9 sectors per track

FEH 5.25" disk drive 1 side, 40 tracks, 8 sectors per track

FFH 5.25" disk drive 2 sides, 40 tracks, 8 sectors per track

17. DOS File System 381

entry of the FAT to obtain the number of the next cluster containing the file, remembering that a FAT entry can be either 12-
bit or 16-bit. This fourth entry contains the number of the next file cluster.

As the following illustration shows, a chain is formed in which the individual clusters assigned to a file can be located in the
proper sequence. The logical number of each sector can be derived from the cluster number. DOS must send this logical
number to the device driver before these sectors can be read or written by DOS. DOS device drivers operate at sector level
rather than cluster level. To convert clusters to logical sectors, multiply the cluster number by the number of sectors per cluster.

FAT entry and
file clusters

Directory entry for
FORMAT.EXE file

FDFh
FFFh
17Fh
002h

006h
007h
008h
00Dh

003h
00Eh

0.

1.

2.

3.

4.

5.

6.

7.

8.

9.

A.

B.

C.

D.

E.

F.

Entry number:

FAT
(12-Bit)

Media descriptor F O R M
A T
E X E

32 32

0

56 12

74 26 5 0

16 89 0 0

00

04

08

0C

10

14

18

1C

The FAT entry corresponding to the last cluster of a file must contain a special code that tells DOS the file ends here. A cluster
number indicates this code, which is either greater than FF8H (12-bit) or greater than FFF8H (16-bit). However, the following
tables show the meanings of the various FAT entries. For example, cluster numbers FF0H-FF6H (12-bit) or FFF0H-FFF6H
(16-bit) indicate a reserved cluster (i.e., the root directory of a volume). The root directory has a fixed position and size, and
the cluster can be independent rather than chained to the FAT.

Cluster codes FF7H (12-bit) and FFF7H (16-bit) also have special significance. These codes identify clusters whose sectors
contain errors, ensuring that DOS doesn't write data to these bad clusters.

Cluster code 0H indicates unoccupied clusters, as well as the first cluster of the volume. Like the first cluster, code 0H
represents no sectors, because it contains the volume's medium type. As you'll see later in this book, this is why the cluster
number must be reduced by two when converting cluster numbers into sector numbers.

17. DOS File System382

12-bit FAT cluster codes 16-bit FAT cluster codes

Code Meaning Code Meaning

000H Cluster is available 0000H Cluster is available

FF0H-FF6H reserved cluster FFF0H-FFF6H Reserved cluster

FF7H Cluster damaged, not used FFF7H Cluster damaged, not used

FF8H-FFFH Last file cluster FFF8H-FFFFH Last file cluster

xxxH Next file cluster XXXXH Next file cluster

Multiple copies of the FAT

The FAT's importance in the DOS file system becomes obvious when a virus or hardware error damages the FAT. All files
and subdirectories are still available in principle. However, they remain inaccessible to the user because DOS can no longer
gather the individual clusters into one unit.

DOS is designed so several identical copies of the FAT can be kept on a volume. The boot sector's offset address 10H contains
the number of FATs. If DOS finds a medium of this type, it automatically updates all copies of the FAT and records this update
in offset 10H while creating or deleting files. So, if one FAT is damaged, it can be replaced with another, which minimizes
data loss.

The DOS CHKDSK command tests the various FATs to see if they are identical. If the primary FAT is damaged, CHKDSK
replaces the damaged primary FAT with another FAT.

The Root Directory

Now let's look at the structure of a directory.
The root directory of a volume immediately

follows the last copy of the FAT. This root directory
(like all subdirectories) consists of 32-byte entries,
in which information about individual files,
subdirectories, and volume label names can be
stored. The maximum number of entries in the root
directory, and therefore its size, is stored in the BPB
starting at address 11H. The FORMAT command
specifies both the size number and the BPB. Before
considering individual fields of this data structure,
the table on the right provides an overview of a
directory entry.

The first eight bytes usually contain the name of the current file. If the filename is shorter than eight characters, DOS fills
the remaining characters with spaces (ASCII code 32).

If the directory entry doesn't contain information about a file,
but the file is used in another way, the first byte of the filename
(therefore the first byte of the directory entry) is identified by
a special code (see the table on the right).

The second field contains the three character filename
extension. If the extension is less than three characters long,
DOS fills in the extra characters with blank spaces (ASCII
code 32). The period between filename and extension is
displayed by the DOS command DIR but isn't kept in the directory; DIR displays this character so the names are easier to
read.

Directory entry layout

Address Contents Type

00H Filename (blanks padded with spaces) 8 bytes

08H File extension (blanks padded with spaces) 3 bytes

0BH File attribute 1 byte

0CH Reserved 10 bytes

16H Time of last change 1 word

18H Date of last change 1 word

1AH First cluster of file 1 word

1CH File size 2 words

The first byte of the directory entry

Code Meaning

00H Last directory entry

05H First character of filename has ASCII code E5H

2EH File applies to current directory

E5H File deleted

17. DOS File System 383

The one-byte attribute field is next. As shown in the following figure, the individual bits of this field define certain attributes.
The various attributes can be combined so a file (as in the IBMBIOS.COM file) can have the attributes READ_ONLY,
SYSTEM, and HIDDEN.

Attribute field in directory7 6 5 4 3 2 1 0

1 = Write protected
0 = Read/write enabled

1 = System file
1 = Hidden file (invisible to DIR)

Archive bit

1 = Volume name

Reserved

1 = Subdirectory

A reserved field follows the attribute field. DOS uses this field for internal operations, and some sources claim that Novell
NetWare uses this bit for sharing data.

While the significance of bits 0 to 4 is easy to see, the significance of bit 5 needs additional explanation. The name archive
bit comes from its use in making backup copies. Every time a file is created or modified, this bit is set to 1. If a program is
used to backup this file, (for example the DOS BACKUP command), the archive bit is reset to 0. The next time the BACKUP
command is used, it can determine, from the archive bit, whether this file has been modified since the last backup. If it still
contains the value 0, the file doesn't have to be backed up again. If the archive bit contains a 1, the file was modified and should
be backed up again.

The attributes volume label name and subdirectory will be discussed in more detail later. A reserved field, which DOS requires
for internal operations, follows the attribute field. The time and date fields indicate when the file was last created or modified.
Both are stored as words (2 bytes), but have special and different formats.

Seconds in 2-second increments (e.g., 13 = 26 seconds)

0123456789101112131415

Minute

Hour

Day of the month

0123456789101112131415

Month (1-12)

Year (relative to 1980)

Date field format in the directory entry of a file

Time field format in the directory entry of a file

17. DOS File System384

The next field shows the number of the cluster that contains the first data of the file. It also shows the number of the FAT
containing the number of the next cluster assigned to the file. This field forms the beginning of a chain through which all the
clusters assigned to a file can be retrieved.

The file size in bytes is stored in two words with the lower word stored first. Using a small formula and the two words, the
file size can be calculated as follows:

File size = word1 + word2 * 65,536

Subdirectories

Both subdirectories and volume label names deserve special consideration. The volume label name can exist only in the
root directory. It's indicated by bit 3 of the current directory entry's attribute field. The filename in a volume entry acts

as the volume label name. Use the DOS commands DIR, VOL, and TREE to display the volume label name.

If bit 4 of the current directory's attribute field is set, then this entry is for a subdirectory. If bit 1 in this field is also set, the
subdirectory can be addressed. However, this subdirectory isn't displayed when you execute the DIR command. For these
entries, the filename and extension field contain the subdirectory name; the date and time field contain the time of its creation.
The file length field is always 0. The field that usually indicates the first cluster of the file now indicates the cluster that contains
the directory entries of this subdirectory. They have the same 32-byte structure as the entries in the root directory.

As in a normal file, the entry in the FAT corresponding to the subdirectory cluster points to the next cluster of the subdirectory.
This is true as long as one cluster is enough for the directory of the subdirectory. This doesn't apply to the root directory, which
extends through several sectors or clusters that follow each other logically. Also, the individual clusters of the root directory
cannot be connected through the FAT, because the FAT only refers to the data area of the volume. This is the area that accepts
files and subdirectories, but not the root directory.

The process previously described reveals that DOS separates the individual files in a storage unit according to their directories.
Instead of storing the files of one directory in one area, DOS scatters the files across the storage medium.

When a subdirectory is created, two files are created with the names '.' and '..'. These files can be erased only when you remove
the entire subdirectory. The first file points to the current subdirectory. Its cluster field contains the number of the first cluster
of the current subdirectory. The second entry points to the parent directory located before the current directory in the directory
tree. If the parent directory is the root directory, the cluster field contains the value 0. The path to the root directory can be
traced through this entry, since, as every subdirectory searches for its parent directory, it comes closer to the root directory.

Now let's return to our discussion of mass storage device structures. The file area follows the root directory. This area, which
occupies the remaining storage area of the mass storage device, accepts the individual files and various subdirectories. There
is an entry in the FAT corresponding to every cluster in this area. If a file is enlarged, DOS reserves a cluster that is still
available to store the additional data of the file. The FAT entry of the last cluster, which previously indicated the end of the
file, is changed to point to the new cluster. This in turn contains the new end character.

Both DOS Versions 1.0 and 2.0 search for unused clusters from the beginning. In DOS Versions 3.0 and higher, a more
complicated search procedure is used to try to select an unused cluster near the other clusters comprising the file. This reduces
the access time to the file. Conversely, when reducing file size or deleting a file, the FAT is updated to indicate the unused
clusters are again available. They can be used again when a new file is created or expanded.

Let's begin at the point where DOS finds the first cluster or a file and the FAT entry for the next cluster in the first cluster.
We need to calculate the sector from this cluster.

1. Subtract 2 from the cluster number. The first two FAT entries contain the media descriptor, so FAT entry 2 is the actual
zero cluster on the volume.

2. Multiply the cluster by the number of sectors per cluster. BIOS obtains this information from the BIOS Parameter
Block loaded from the boot sector. The result relates to the first sector of the volume, instead of the first sector of the

17. DOS File System 385

data range (which is the result we want). You can compute the logical sector where the data range starts, also using
information from the BIOS Parameter Block.

3. The boot sector, the FAT and its duplicates, and the root directory precede the volume's data range. The lengths of these
ranges must be calculated and added together. Read the number of sectors reserved from offset address 0EH of the
boot sector. Read the number of FAT sectors from offset address 16H of the boot sector, and multiply the number of
FAT sectors by the number of FATs (found in address 10H), then add the total to the number of reserved sectors.

4. DOS also requires the number of sectors occupied by the root directory. This number is stored in the word beginning
at offset 11H in the boot sector. Multiply this value by 32 (bytes per entry), and divide the result by 512 (bytes per
sector). Add the result to the boot sector and FAT lengths to obtain the number of the first sector in the data range.

DOS performs this calculation only when booting, or when a medium has been changed (e.g., every time you change diskettes
in a floppy disk drive).

Calculating the
first sector of the

data range

00H

First sector

0EH Number of reserved sectors 1 word

10H Number of FATs 1 byte *+

1 word11H Number of entries in root directory 32 / 512*+

16H Number of sectors per FAT 1 Word

Boot sector (sector 0)

By adding the number of the first sector in the data range to the first sector number of the addressed file, you receive the logical
sector number. DOS can then pass this logical sector number to the device driver for file access.

When DOS requires access to both the first cluster and subsequent clusters of the file, it must read those subsequent clusters
from the FAT. These calculations vary depending on the widths of the FAT entries. Reading the next adjacent cluster is easy
to do with a 16-bit FAT. Simply multiply the cluster number by 2 to find the next cluster. The result represents the offset
address relative to the beginning of the FAT in memory, where the next cluster can be found.

If DOS is dealing with a 12-bit FAT, multiply the cluster number by 1.5. The whole number part of the product becomes the
offset in the FAT. The word at this memory address is read. If the product is a whole number, the word read must be combined
with a logical AND to 0FFFH to obtain the number of the next cluster. If the product isn't a whole number, the AND is omitted
and the word is shifted by 4 bits to the right (divided by 16).

DOS usually doesn't have to load the FAT into memory, because it permanently stores a copy of this data structure in memory
to save execution time.

Now DOS knows the next cluster of the file. If you're using a 12-bit FAT, the next cluster lies in the range from FF8H to FFFH.
If you're using a 16-bit FAT, the next cluster lies in the range from FFF8H to FFFFH. This process repeats until DOS finds
the end of the file.

