
File Allocation Table
From Wikipedia, the free encyclopedia

File Allocation Table (FAT) is a file system developed by Microsoft for MS-DOS and is the primary
file system for consumer versions of Microsoft Windows up to and including Windows Me. FAT as it
applies to flexible/floppy and optical disc cartridges (FAT12 and FAT16 without long filename support)
has been standardized as ECMA-107 and ISO/IEC 9293. The file system is partially patented.

The FAT file system is relatively uncomplicated, and is supported by virtually all existing operating
systems for personal computers. This ubiquity makes it an ideal format for floppy disks and solid-state
memory cards, and a convenient way of sharing data between disparate operating systems installed on
the same computer (a dual boot environment).

The most common implementations have a serious drawback in that when files are deleted and new files
written to the media, directory fragments tend to become scattered over the entire disk, making reading
and writing a slow process. Defragmentation is one solution to this, but is often a lengthy process in
itself and has to be performed regularly to keep the FAT file system clean. Defragmentation should not
be performed on solid-state memory cards since they wear down eventually.

Contents
1 History

1.1 FAT12
1.2 Directories
1.3 Initial FAT16
1.4 Extended partition and logical drives
1.5 Final FAT16
1.6 Long File Names (VFAT, LFNs)
1.7 FAT32
1.8 Fragmentation
1.9 Third party support
1.10 FAT and Alternate Data Streams
1.11 Future
1.12 exFAT

2 Design
2.1 Boot Sector

2.1.1 Exceptions
2.2 File Allocation Table
2.3 Directory table

2.3.1 Long file names
2.3.2 Third-party extensions

3 FAT licensing
3.1 Appeal

4 See also
5 References
6 External links

Page 1 of 22File Allocation Table - Wikipedia, the free encyclopedia

2/20/2008http://en.wikipedia.org/w/index.php?title=File_Allocation_Table&printable=yes

History
The FAT
file system
was created
for
managing
disks in
Microsoft
Standalone
Disk
BASIC. In
August
1980 Tim
Paterson

incorporated FAT into his 86-DOS operating system for the S-100 8086 CPU boards;[1] the file system
was the main difference between 86-DOS and its predecessor, CP/M.

FAT12 FAT16 FAT32 exFAT (aka
FAT64)

Developer Microsoft

Full Name File Allocation Table

(12-bit version) (16-bit version) (32-bit version) (ex-tended
version)

Introduced 1977 (Microsoft
Disk BASIC)

November 1987,
(Compaq DOS 3.31)

August 1996
(Windows 95 OSR2)

March 2008
(Vista SP1)

Partition
identifier

0x01 (MBR) 0x04, 0x06, 0x0E
(MBR)

0x0B, 0x0C (MBR)
EBD0A0A2-B9E5-
4433
-87C0-68B6B72699C7
(GPT)

TBU

Structures

Directory
contents

Table

File allocation Linked List

Bad blocks Cluster tagging

Limits

Max file size 4 GiB − 1 byte (or volume size if smaller)

Max number of
files

4,077 (212-19) 65,517 (216-19) 268,435,437 (228-19) TBU

Max filename
size

8.3 filename 255 characters when
using LFN/vfat

TBU

Max volume size 32 MiB 2 GiB
4 GiB with 64k
clusters (not widely
supported)

8 TiB 264 bytes (16
Exabytes)

Features

Dates recorded Creation, modified, access (accuracy to day only)
(Creation time and access date are only available when LFN support is enabled)

Date range January 1, 1980 - December 31, 2107

Forks Not natively

Attributes Read-only, hidden, system, volume label, subdirectory, archive

Permissions No

Transparent
compression

Per-volume, Stacker, DoubleSpace,
DriveSpace

No TBU

Transparent
encryption

Per-volume only with DR-DOS No TBU

Page 2 of 22File Allocation Table - Wikipedia, the free encyclopedia

2/20/2008http://en.wikipedia.org/w/index.php?title=File_Allocation_Table&printable=yes

The name originates from the usage of a table which centralizes the information about which areas
belong to files, are free or possibly unusable, and where each file is stored on the disk. To limit the size
of the table, and the number of bits required in directory entries, disk space is allocated to files in
contiguous groups of hardware sectors called clusters. The maximum possible number of clusters has
dramatically increased over time, and the number of bits required to identify a cluster is used to name
the successive major versions of the format. The FAT standard has also been expanded in other ways
while preserving backward compatibility with existing software.

FAT12

This initial version of FAT is now referred to as FAT12. Designed as a file system for floppy diskettes,
it had the following limitations: Cluster addresses were only 12 bits long, which not only limited the
cluster count to 4078[2], but made FAT manipulation a bit tricky with the PC's 8-bit or 16-bit registers.
(Under Linux, FAT12 is limited to 4084[3] clusters.) The disk size was stored as a 16-bit count of
sectors, which limited the size to 32 MiB. FAT12 was used by several manufacturers with different
physical formats but a typical floppy diskette at the time was 5.25-inch, single-sided, 40 tracks, with 8
sectors per track, resulting in a capacity of only 160 KiB for both the system areas and files. The FAT12
limitations exceeded this capacity by one or more orders of magnitude. The limits were successively
lifted in the following years which increased storage capacity dramatically but eventually rendered
FAT12 obsolete.

By convention all the control structures were organized to fit inside the first track, thus avoiding head
movement during read and write operations, although this varied depending on the manufacturer and
physical format of the disk. Since when FAT12 was introduced DOS had no support for hierarchical
directories, the maximum number of files was typically limited to a few dozen.

A limitation which was not addressed until much later was that any bad sector in the control structures
area, track 0, could prevent the diskette from being usable. The DOS formatting tool rejected such
diskettes completely. Bad sectors were only allowed in the file area, where they made the entire holding
cluster unusable as well.

Directories

In March 1983, IBM launched the PC XT computer, which featured a 10 MB hard disk. MS-DOS/PC-
DOS 2.0 was released simultaneously, and introduced hierarchical directories to properly support the
"massive" capacity the new medium provided. Apart from allowing for better organization of files,
directories allowed it to store many more files on the hard disk, as the maximum number of files was no
longer constrained by the (still fixed) root directory size. This number could now be equal to the number
of clusters (or even greater, given that zero-sized files do not use any clusters on FAT).

The format of the FAT itself did not change. The 10 MB hard disk on the PC XT had 4 KiB clusters. If a
20 MB hard disk was later installed, and formatted with MS-DOS 2.0, the resultant cluster size would be
8 KiB. The boundary for determining which cluster size to use was at 15.9 MiB.

Initial FAT16

In 1984 IBM released the PC AT, which featured a 20 MB hard disk. Microsoft introduced MS-DOS 3.0

Page 3 of 22File Allocation Table - Wikipedia, the free encyclopedia

2/20/2008http://en.wikipedia.org/w/index.php?title=File_Allocation_Table&printable=yes

in parallel. Cluster addresses were increased to 16-bit, allowing for a greater number of clusters (up to
65,517) and consequently much greater file-system sizes. However, the maximum possible number of
sectors and the maximum (partition, rather than disk) size of 32 MiB did not change. Therefore,
although technically already "FAT16", this format was not yet what today is commonly understood
under this name. A 20 MiB hard disk formatted under MS-DOS 3.0 was not accessible by the older MS-
DOS 2.0. Of course, MS-DOS 3.0 could still access MS-DOS 2.0 style 8 KiB cluster partitions.

MS-DOS 3.0 also introduced support for high-density 1.2 MB 5.25" diskettes, which notably had 15
sectors per track, hence more space for FAT. This probably prompted a dubious optimization of the
cluster size, which went down from 2 sectors to just 1. The net effect was that high density diskettes
were significantly slower than older double density ones.

Extended partition and logical drives

Apart from improving the structure of the FAT file system itself, a parallel development allowing an
increase in the maximum possible FAT storage space was the introduction of multiple FAT partitions.
Originally partitions were supposed to be used only for sharing the disk between operating systems,
typically DOS and Xenix at the time, so DOS was only prepared to handle one FAT partition. It was not
possible to create multiple DOS partitions using DOS tools, and third party tools would warn that such a
scheme would not be compatible with DOS. Simply allowing several identical-looking DOS partitions
could lead to naming problems: should C: be the first FAT partition on disk, for simplicity, or rather the
partition marked as active in the partition table, so that several DOS versions can co-exist? And which
partition should be C: if the system was booted from a diskette?

To allow the use of more FAT partitions in a compatible way, a new partition type was introduced (in
MS-DOS 3.2, January 1986), the extended partition; which was actually just a container for additional
partitions called logical drives. Originally only 1 logical drive was possible, allowing the use of hard
disks up to 64 MB. In MS-DOS 3.3 (August 1987) this limit was increased to 24 drives; it probably
came from the compulsory letter-based disk naming (A and B being reserved for the two floppy drives).
The logical drives were described by on-disk structures which closely resemble the Master Boot Record
(MBR) of the disk (which describes the primary partitions), probably to simplify coding. Though some
believe these partitions were nested in a way analogous to Russian matryoshka dolls, that wasn't the
case. They were always stored on disk like a row of separate blocks within a single box; these blocks are
often referred to as being chained together, by the links in their extended boot record (EBR) sectors.
Only one extended partition was allowed. Logical drives were not bootable, and the extended partition
could only be created after the primary FAT partition (except with third party formatting tools), which
removed all ambiguity, but also the possibility of booting several DOS versions from the same hard
disk.

A useful side-effect of the extended partition scheme was to significantly increase the maximum number
of partitions possible on a PC hard disk, beyond the 4 which could be described by the MBR alone.

Prior to the introduction of extended partitions, some hard disk controllers (which at that time were
separate option boards, since the IDE standard did not yet exist) could make large hard disks appear as
two separate disks.

Final FAT16

Page 4 of 22File Allocation Table - Wikipedia, the free encyclopedia

2/20/2008http://en.wikipedia.org/w/index.php?title=File_Allocation_Table&printable=yes

Finally in November 1987, Compaq DOS 3.31 introduced what is today called the FAT16 format, with
the expansion of the 16-bit disk sector index to 32 bits. The result was initially called the DOS 3.31
Large File System. Although the on-disk changes were apparently minor, the entire DOS disk code had
to be converted to use 32-bit sector numbers, a task complicated by the fact that it was written in 16-bit
assembly language.

In 1988 the improvement became more generally available through MS-DOS 4.0 and OS/2 1.1. The
limit on partition size was now dictated by the 8-bit signed count of sectors-per-cluster, which had a
maximum power-of-two value of 64. With the usual hard disk sector size of 512 bytes, this gives 32 KiB
clusters, thereby fixing the "definitive" limit for the FAT16 partition size at 2 gibibytes. On magneto-
optical media, which can have 1 or 2 KiB sectors, the limit is proportionally greater.

Much later, Windows NT increased the maximum cluster size to 64 KiB by considering the sectors-per-
cluster count as unsigned. However, the resulting format was not compatible with any other FAT
implementation of the time, and it generated massive internal fragmentation. Windows 98 also
supported reading and writing this variant, but its disk utilities did not work with it.

The number of root directory entries available is set at formatting time, and is stored in a 16-bit signed
field setting an absolute limit of 32767 entries (32736, a multiple of 32, in practice). For historical
reasons, FAT12 and FAT16 media generally use 512 root directory entries on non-floppy media, and
other sizes may be incompatible with some software or devices (entries being file and/or folder names in
the old 8.3 format).[4] Some third party tools like mkdosfs allow the user to set this parameter.[5]

Long File Names (VFAT, LFNs)

One of the "user experience" goals for the designers of Windows 95 was the ability to use long
filenames (LFNs—up to 255 UTF-16 code points long), in addition to classic 8.3 filenames. LFNs were
implemented using a work-around in the way directory entries are laid out (see below). The version of
the file system with this extension is usually known as VFAT after the Windows 95 VxD device driver,
also known as "Virtual FAT" in Microsoft's old document.

Interestingly, the VFAT driver actually appeared before Windows 95, in Windows for Workgroups 3.11,
but was only used for implementing 32-bit File Access, a higher performance protected mode file access
method, bypassing DOS and directly using either the BIOS, or, better, the Windows-native protected
mode disk drivers.

In Windows NT, support for long filenames on FAT started from version 3.5. OS/2 added long filename
support to FAT using extended attributes (EA) before the introduction of VFAT; thus, VFAT long
filenames are invisible to OS/2, and EA long filenames are invisible to Windows.

FAT32

In order to overcome the volume size limit of FAT16, while still allowing DOS real-mode code to
handle the format without unnecessarily reducing the available conventional memory, Microsoft decided
to implement a newer generation of FAT, known as FAT32, with cluster values held in a 32-bit field, of
which 28 bits are used to hold the cluster number, for a maximum of approximately 250 million (228)
clusters. This would allow for drive sizes of up to 8 tebibytes with 32KiB clusters, but the boot sector

Page 5 of 22File Allocation Table - Wikipedia, the free encyclopedia

2/20/2008http://en.wikipedia.org/w/index.php?title=File_Allocation_Table&printable=yes

uses a 32-bit field for the sector count, limiting volume size to 2TiB on a hard disk with 512 byte
sectors.

On Windows 95/98, due to the version of Microsoft's ScanDisk utility included with these operating
systems being a 16-bit application, the FAT structure is not allowed to grow beyond around 4 million (<
222) clusters, placing the volume limit at 127.53 gibibytes.[6]. A limitation in original versions of
Windows 98/98SE's Fdisk causes it to incorrectly report disk sizes over 64GiB.[7] A corrected version is
available from Microsoft. These limitations do not apply to Windows 2000/XP except during Setup, in
which there is a 32GiB limit.[8] Windows Me supports the FAT32 file system without any limits.[9]

FAT32 was introduced with Windows 95 OSR2, although reformatting was needed to use it, and
DriveSpace 3 (the version that came with Windows 95 OSR2 and Windows 98) never supported it.
Windows 98 introduced a utility to convert existing hard disks from FAT16 to FAT32 without loss of
data. In the NT line, native support for FAT32 arrived in Windows 2000. A free FAT32 driver for
Windows NT 4.0 was available from Winternals, a company later acquired by Microsoft. Since the
acquisition the driver is no longer officially available.

Windows 2000 and Windows XP can read and write to FAT32 file systems of any size, but the format
program included in Windows 2000 and higher can only create FAT32 file systems of 32 GiB or less.
This limitation is by design[6] and was imposed because many tasks on a very large FAT32 file system
become slow and inefficient.[10] This limitation can be bypassed by using third-party formatting
utilities.

The maximum possible size for a file on a FAT32 volume is 4 GiB minus 1 Byte (232−1 bytes). Video
capture and editing applications and some other software can easily exceed this limit. Larger files
require another formatting type such as HFS+ or NTFS. Until mid-2006, those who run dual boot
systems or who move external data drives between computers with different operating systems had little
choice but to stick with FAT32. Since then, full support for NTFS has become available in Linux and
many other operating systems, by installing the FUSE library (on Linux) together with the NTFS-3G
application. Data exchange is also possible between Windows and Linux by using the Linux-native ext2
or ext3 file systems through the use of external drivers for Windows, such as ext2 IFS; however,
Windows cannot boot from ext2 or ext3 partitions.

Fragmentation

The FAT file system does not contain mechanisms which prevent newly written files from becoming
scattered across the partition.[1] Other file systems, like HPFS, use free space bitmaps that indicate used
and available clusters, which could then be quickly looked up in order to find free contiguous areas
(improved in exFAT). Another solution is the linkage of all free clusters into one or more lists (as is
done in Unix file systems). Instead, the FAT has to be scanned like an array in order to find free clusters,
which can lead to performance penalties with today's large hard disks and consequently their large FAT
sizes.

In fact, computing free disk space on FAT is one of the most resource intensive operations, as it requires
reading the entire FAT linearly. A possible justification suggested by Microsoft's Raymond Chen for
limiting the maximum size of FAT32 partitions created on Windows was the time required to perform a
simple "DIR" operation, which always displays the free disk space as the last line.[10] Displaying this
line took longer and longer as the number of clusters increased.

Page 6 of 22File Allocation Table - Wikipedia, the free encyclopedia

2/20/2008http://en.wikipedia.org/w/index.php?title=File_Allocation_Table&printable=yes

The High Performance File System (HPFS) divides disk space into bands, which have their own free
space bitmap, where multiple files opened for simultaneous write could be expanded separately.[1]

Some of the perceived problems with fragmentation resulted from operating system and hardware
limitations.

The single-tasking DOS and the traditionally single-tasking PC hard disk architecture (only 1
outstanding input/output request at a time, no DMA transfers) did not contain mechanisms which could
alleviate fragmentation by asynchronously prefetching next data while the application was processing
the previous chunks.

Similarly, write-behind caching was often not enabled by default with Microsoft software (if present)
given the problem of data loss in case of a crash, made easier by the lack of hardware protection
between applications and the system.

MS-DOS also did not offer a system call which would allow applications to make sure a particular file
has been completely written to disk in the presence of deferred writes (cf. fsync in Unix or DosBufReset
in OS/2). Disk caches on MS-DOS were operating on disk block level and were not aware of higher-
level structures of the file system. In this situation, cheating with regard to the real progress of a disk
operation was most dangerous.

Modern operating systems have introduced these optimizations to FAT partitions, but optimizations can
still produce unwanted artifacts in case of a system crash. A Windows NT system will allocate space to
files on FAT in advance, selecting large contiguous areas, but in case of a crash, files which were being
appended will appear larger than they were ever written into, with dozens of random kilobytes at the
end.

With the large cluster sizes, 16 or 32K, forced by larger FAT32 partitions, the external fragmentation
becomes somewhat less significant, and internal fragmentation, ie. disk space waste (since files are
rarely exact multiples of cluster size), starts to be a problem as well, especially when there are a great
many small files.

Third party support

Other IBM PC operating systems—such as Linux, FreeBSD, BeOS and JNode—have all supported
FAT, and most added support for VFAT, FAT32, JFAT (http://www.jnode.org/node/844) shortly after
the corresponding Windows versions were released. Early Linux distributions also supported a format
known as UMSDOS, which was FAT with Unix file attributes (such as long file name and access
permissions) stored in a separate file called “--linux-.---”. UMSDOS fell into disuse after VFAT was
released and is not enabled by default in Linux kernels from version 2.5.7 onwards.[11] The Mac OS X
operating system also supports the FAT file systems on volumes other than the boot disk. The Amiga
supports FAT through the CrossDOS file system.

FAT and Alternate Data Streams

The FAT file system itself is not designed for supporting Alternate Data Streams (ADS), but some
operating systems that heavily depend on them have devised various methods for handling them in FAT

Page 7 of 22File Allocation Table - Wikipedia, the free encyclopedia

2/20/2008http://en.wikipedia.org/w/index.php?title=File_Allocation_Table&printable=yes

drives. Such methods either store the additional information in extra files and directories (Mac OS), or
give new semantics to previously unused fields of the FAT on-disk data structures (OS/2 and Windows
NT). The second design, while presumably more efficient, prevents any copying or backing-up of those
volumes using non-aware tools; manipulating such volumes using non-aware disk utilities (e.g.
defragmenters or CHKDSK) will probably lose the information.

Mac OS using PC Exchange stores its various dates, file attributes and long filenames in a hidden file
called FINDER.DAT, and resource forks (a common Mac OS ADS) in a subdirectory called
RESOURCE.FRK, in every directory where they are used. From PC Exchange 2.1 onwards, they store
the Mac OS long filenames as standard FAT long filenames and convert FAT filenames longer than 31
characters to unique 31-character filenames, which can then be made visible to Macintosh applications.

Mac OS X stores resource forks and metadata (file attributes, other ADS) in a hidden file with a name
constructed from the owner filename prefixed with "._", and Finder stores some folder and file metadata
in a hidden file called ".DS_Store".

OS/2 heavily depends on extended attributes (EAs) and stores them in a hidden file called
"EA DATA. SF" in the root directory of the FAT12 or FAT16 volume. This file is indexed by 2
previously reserved bytes in the file's (or directory's) directory entry. In the FAT32 format, these bytes
hold the upper 16 bits of the starting cluster number of the file or directory, hence making it difficult to
store EAs on FAT32. Extended attributes are accessible via the Workplace Shell desktop, through
REXX scripts, and many system GUI and command-line utilities (such as 4OS2).[12]

To accommodate its OS/2 subsystem, Windows NT supports the handling of extended attributes in
HPFS, NTFS, and FAT. It stores EAs on FAT and HPFS using exactly the same scheme as OS/2, but
does not support any other kind of ADS as held on NTFS volumes. Trying to copy a file with any ADS
other than EAs from an NTFS volume to a FAT or HPFS volume gives a warning message with the
names of the ADSs that will be lost.

Windows 2000 onward acts exactly as Windows NT, except that it ignores EAs when copying to FAT32
without any warning (but shows the warning for other ADSs, like "Macintosh Finder Info" and
"Macintosh Resource Fork").

Future

Microsoft has recently secured patents for VFAT and FAT32 (but not the original FAT). Despite two
earlier rulings against them, Microsoft prevailed and was awarded the patents.

Since Microsoft has announced the discontinuation of its MS-DOS-based consumer operating systems
with Windows Me, it remains unlikely that any new versions of FAT will appear. For most purposes, the
NTFS file system that was developed for the Windows NT line is superior to FAT from the points of
view of efficiency, performance, and reliability; its main drawbacks are the size overhead for small
volumes and the very limited support by anything other than the NT-based versions of Windows, since
the exact specification is a trade secret of Microsoft. The availability of NTFS-3G since mid 2006 has
led to much improved NTFS support in Unix-like operating systems, considerably alleviating this
concern. It is still not possible to use NTFS in DOS-like operating systems, which in turn makes it
difficult to use a DOS floppy for recovery purposes. Microsoft provided a recovery console to work
around this issue, but for security reasons it severely limited what could be done through the Recovery

Page 8 of 22File Allocation Table - Wikipedia, the free encyclopedia

2/20/2008http://en.wikipedia.org/w/index.php?title=File_Allocation_Table&printable=yes

Console by default. The movement of recovery utilities to boot CDs based on BartPE or Linux (with
NTFS-3G) is finally eroding this drawback.

FAT is still the normal file system for removable media (with the exception of CDs and DVDs), with
FAT12 used on floppies, and FAT16 on most other removable media (such as flash memory cards for
digital cameras and USB flash drives). Most removable media are not yet large enough to benefit from
FAT32, although some larger flash drives, like SDHC, do make use of it. FAT16 is used on these drives
for reasons of compatibility and size overhead.

The FAT32 formatting support in Windows 2000 and XP is limited to volumes of 32 GB, which
effectively forces users of modern hard drives either to use NTFS, to partition the drive into smaller
volumes (below 32 GB), or to format the drive using third party tools.

exFAT

exFAT is an incompatible replacement for FAT file systems that was introduced with Windows
Embedded CE 6.0. It is intended to be used on flash drives, where FAT is used today. Windows XP and
Vista file system drivers will be offered by Microsoft shortly after the release of Windows CE 6.0.
exFAT introduces a free space bitmap allowing faster space allocation and faster deletes, support for
files up to 264 bytes, larger cluster sizes (up to 32 MB in the first implementation), an extensible
directory structure and name hashes for filenames for faster comparisons. It does not have short 8.3
filenames anymore. It does not appear to have security access control lists or file system journaling like
NTFS, though device manufacturers can choose to implement simplified support for transactions
(backup file allocation table used for the write operations, primary FAT for storing last known good
allocation table).

Design
The following is an overview of the order of structures in a FAT partition or disk:

A FAT file system is composed of four different sections.

1. The Reserved sectors, located at the very beginning. The first reserved sector is the Boot Sector
(aka Partition Boot Record). It includes an area called the BIOS Parameter Block (with some
basic file system information, in particular its type, and pointers to the location of the other
sections) and usually contains the operating system's boot loader code. The total count of reserved
sectors is indicated by a field inside the Boot Sector. Important information from the Boot Sector
is accessible through an operating system structure called the Drive Parameter Block in DOS and
OS/2. For FAT32 file systems, the reserved sectors include a Backup Boot Sector at Sector 6.

2. The FAT Region. This typically contains two copies (may vary) of the File Allocation Table for
the sake of redundancy checking, although the extra copy is rarely used, even by disk repair
utilities. These are maps of the Data Region, indicating which clusters are used by files and
directories.

Boot
sector

More
reserved
sectors

(optional)

File
Allocation
Table #1

File
Allocation
Table #2

Root
Directory

(FAT12/16
only)

Data Region (for files and
directories) ...

(To end of partition or disk)

Page 9 of 22File Allocation Table - Wikipedia, the free encyclopedia

2/20/2008http://en.wikipedia.org/w/index.php?title=File_Allocation_Table&printable=yes

3. The Root Directory Region. This is a Directory Table that stores information about the files and
directories located in the root directory. It is only used with FAT12 and FAT16 and means that the
root directory has a fixed maximum size which is pre-allocated at creation of this volume. FAT32
stores the root directory in the Data Region along with files and other directories instead, allowing
it to grow without such a restraint.

4. The Data Region. This is where the actual file and directory data is stored and takes up most of
the partition. The size of files and subdirectories can be increased arbitrarily (as long as there are
free clusters) by simply adding more links to the file's chain in the FAT. Note however, that
clusters are allocated in their entirety, and so if a 1 KB file resides in a 32 KB cluster, 31 KB are
wasted.

FAT uses little endian format for entries in the header and the FAT(s).

Boot Sector

Common structure of the first 36 bytes used by all FAT versions:

Byte
Offset

Length
(bytes) Description

0x00 3
Jump instruction. This instruction will be executed and will skip past the rest of
the (non-executable) header if the partition is booted from. See Volume Boot
Record.

0x03 8

OEM Name (padded with spaces). MS-DOS checks this field to determine
which other parts of the boot record can be relied on.[13][14] Common values are
IBM 3.3 (with two spaces between the "IBM" and the "3.3"), MSDOS5.0 and
MSWIN4.1.

0x0b 2 Bytes per sector. A common value is 512, especially for file systems on IDE (or
compatible) disks. The BIOS Parameter Block starts here.

0x0d 1
Sectors per cluster. Allowed values are powers of two from 1 to 128. However,
the value must not be such that the number of bytes per cluster becomes greater
than 32 KiB (KB).

0x0e 2 Reserved sector count. The number of sectors before the first FAT in the file
system image. Should be 1 for FAT12/FAT16. Usually 32 for FAT32.

0x10 1 Number of file allocation tables. Almost always 2.

0x11 2

Maximum number of root directory entries. Only used on FAT12 and FAT16,
where the root directory is handled specially. Should be 0 for FAT32. This
value should always be such that the root directory ends on a sector boundary
(i.e. such that its size becomes a multiple of the sector size). 224 is typical for
floppy disks.

0x13 2 Total sectors (if zero, use 4 byte value at offset 0x20)

Media descriptor[15]

0xF0
3.5" Double Sided, 80 tracks per side, 18 or 36 sectors per track
(1.44MB or 2.88MB). 5.25" Double Sided, 15 sectors per track
(1.2MB). Used also for other media types.

0xF8 Hard disk. Single sided, 80 tracks per side, 9 sectors per track

Page 10 of 22File Allocation Table - Wikipedia, the free encyclopedia

2/20/2008http://en.wikipedia.org/w/index.php?title=File_Allocation_Table&printable=yes

Further structure used by FAT12 and FAT16, also known as Extended BIOS Parameter Block:

The boot sector is portrayed here as found on e.g. an OS/2 1.3 boot diskette. Earlier versions used a
shorter BIOS Parameter Block and their boot code would start earlier (for example at offset 0x2b in
OS/2 1.1).

0x15 1

Same value of media descriptor should be repeated as first byte of each copy of
FAT. Certain operating systems (MSX-DOS version 1.0) ignore boot sector
parameters altogether and use media descriptor value from the first byte of FAT
to determine file system parameters.

0xF9 3.5" Double sided, 80 tracks per side, 9 sectors per track (720K). 5.25"
Double sided, 40 tracks per side, 15 sectors per track (1.2MB)

0xFA 5.25" Single sided, 80 tracks per side, 8 sectors per track (320K)

0xFB 3.5" Double sided, 80 tracks per side, 8 sectors per track (640K)

0xFC 5.25" Single sided, 40 tracks per side, 9 sectors per track (180K)

0xFD 5.25" Double sided, 40 tracks per side, 9 sectors per track (360K). Also
used for 8".

0xFE 5.25" Single sided, 40 tracks per side, 8 sectors per track (160K). Also
used for 8".

0xFF 5.25" Double sided, 40 tracks per side, 8 sectors per track (320K)

0x16 2 Sectors per File Allocation Table for FAT12/FAT16
0x18 2 Sectors per track
0x1a 2 Number of heads
0x1c 4 Hidden sectors
0x20 4 Total sectors (if greater than 65535; otherwise, see offset 0x13)

Byte
Offset

Length
(bytes) Description

0x24 1 Physical drive number
0x25 1 Reserved ("current head")

0x26 1 Extended boot signature. Value is 0x29[15] or 0x28.
0x27 4 ID (serial number)
0x2b 11 Volume Label

0x36 8
FAT file system type, padded with blanks (0x20), e.g.: "FAT12 ", "FAT16 ".
This is not meant to be used to determine drive type, however, some utilities use
it in this way.

0x3e 448 Operating system boot code
0x1FE 2 Boot sector signature (0x55 0xAA)

Page 11 of 22File Allocation Table - Wikipedia, the free encyclopedia

2/20/2008http://en.wikipedia.org/w/index.php?title=File_Allocation_Table&printable=yes

Further structure used by FAT32:

Exceptions

The implementation of FAT used in MS-DOS for the Apricot PC had a different boot sector layout, to
accommodate that computer's non-IBM compatible BIOS. The jump instruction and OEM name were
omitted, and the MS-DOS file system parameters (offsets 0x0B - 0x17 in the standard sector) were
located at offset 0x50. Later versions of Apricot MS-DOS gained the ability to read and write disks with
the standard boot sector in addition to those with the Apricot one.

DOS Plus on the BBC Master 512 did not use conventional boot sectors at all. Data disks omitted the
boot sector and began with a single copy of the FAT (the first byte of the FAT was used to determine
disk capacity) while boot disks began with a miniature ADFS file system containing the boot loader,
followed by a single FAT. It could also access standard PC disks formatted to 180 KB or 360 KB, again
using the first byte of the FAT to determine capacity.

File Allocation Table

A partition is divided up into identically sized clusters, small blocks of contiguous space. Cluster sizes
vary depending on the type of FAT file system being used and the size of the partition, typically cluster
sizes lie somewhere between 2 KB and 32 KB. Each file may occupy one or more of these clusters
depending on its size; thus, a file is represented by a chain of these clusters (referred to as a singly linked
list). However these clusters are not necessarily stored adjacent to one another on the disk's surface but
are often instead fragmented throughout the Data Region.

Byte
Offset

Length
(bytes) Description

0x24 4 Sectors per file allocation table
0x28 2 FAT Flags
0x2a 2 Version
0x2c 4 Cluster number of root directory start
0x30 2 Sector number of FS Information Sector
0x32 2 Sector number of a copy of this boot sector
0x34 12 Reserved
0x40 1 Physical Drive Number
0x41 1 Reserved
0x42 1 Extended boot signature.
0x43 4 ID (serial number)
0x47 11 Volume Label
0x52 8 FAT file system type: "FAT32 "
0x5a 420 Operating system boot code

0x1FE 2 Boot sector signature (0x55 0xAA)

Page 12 of 22File Allocation Table - Wikipedia, the free encyclopedia

2/20/2008http://en.wikipedia.org/w/index.php?title=File_Allocation_Table&printable=yes

The File Allocation Table (FAT) is a list of entries that map to each cluster on the partition. Each entry
records one of five things:

the cluster number of the next cluster in a chain
a special end of clusterchain (EOC) entry that indicates the end of a chain
a special entry to mark a bad cluster
a special entry to mark a reserved cluster
a zero to note that the cluster is unused

Each version of the FAT file system uses a different size for FAT entries. The size is indicated by the
name, for example the FAT16 file system uses 16 bits for each entry while the FAT32 file system uses
32 bits. Only 28 of these are actually used, however. This difference means that the File Allocation
Table of a FAT32 system can map a greater number of clusters than FAT16, allowing for larger partition
sizes with FAT32. This also allows for more efficient use of space than FAT16, because on the same
hard drive a FAT32 table can address smaller clusters which means less wasted space.

FAT entry values:

Note that FAT32 uses only 28 bits of the 32 possible bits. The upper 4 bits are usually zero but are
reserved and should be left untouched. In the table above these are denoted by a question mark.

The first cluster of the Data Region is cluster #2. That leaves the first two entries of the FAT unused. In
the first byte of the first entry a copy of the media descriptor is stored. The remaining 8 bits (if FAT16),
or 20 bits (if Fat32) of this entry are 1. In the second entry the end-of-cluster-chain marker is stored. The
high order two bits of the second entry are sometimes, in the case of FAT16 and FAT32, used for dirty
volume management: high order bit 1: last shutdown was clean; next highest bit 1: during the previous
mount no disk I/O errors were detected.[16]

Directory table

A directory table is a special type of file that represents a directory (nowadays commonly known as a
folder). Each file or directory stored within it is represented by a 32-byte entry in the table. Each entry
records the name, extension, attributes (archive, directory, hidden, read-only, system and volume), the
date and time of creation, the address of the first cluster of the file/directory's data and finally the size of
the file/directory. Aside from the Root Directory Table in FAT12 and FAT16 file systems, which

FAT12 FAT16 FAT32 Description
0x000 0x0000 0x?0000000 Free Cluster
0x001 0x0001 0x?0000001 Reserved value; do not use
0x002 -
0xFEF

0x0002 -
0xFFEF

0x?0000002 - 0x?
FFFFFEF Used cluster; value points to next cluster

0xFF0 -
0xFF6

0xFFF0 -
0xFFF6

0x?FFFFFF0 -
0x?FFFFFF6 Reserved values; do not use[15].

0xFF7 0xFFF7 0x?FFFFFF7 Bad sector in cluster or reserved cluster
0xFF8 -
0xFFF

0xFFF8 -
0xFFFF

0x?FFFFFF8 -
0x?FFFFFFF Last cluster in file

Page 13 of 22File Allocation Table - Wikipedia, the free encyclopedia

2/20/2008http://en.wikipedia.org/w/index.php?title=File_Allocation_Table&printable=yes

occupies the special Root Directory Region location, all Directory Tables are stored in the Data Region.
The actual number of entries in a directory stored in the Data Region can grow by adding another cluster
to the chain in the FAT.

Legal characters for DOS file names include the following:

Upper case letters A–Z
Numbers 0–9
Space (though trailing spaces in either the base name or the extension are considered to be
padding and not a part of the file name, also filenames with space in could not be used on the
DOS command line because of the lack of a suitable escaping system)
! # $ % & ' () - @ ^ _ ` { } ~
(FAT-32 only) + , . ; = []
Values 128–255

This excludes the following ASCII characters:

" * / : < > ? \ |
Windows/MSDOS has no shell escape character
Lower case letters a–z
stored as A–Z on FAT-12/16
Control characters 0–31
Value 127 (DEL)

The DOS file names are in the OEM character set.

Directory entries, both in the Root Directory Region and in subdirectories, are of the following format:

Byte
Offset Length Description

0x00 8

DOS file name (padded with spaces)

The first byte can have the following special values:

0x00 Entry is available and no subsequent entry is in use
0x05 Initial character is actually 0xE5
0x2E 'Dot' entry; either '.' or '..'

0xE5
Entry has been previously erased and is not available. File undelete
utilities must replace this character with a regular character as part of
the undeletion process.

0x08 3 DOS file extension (padded with spaces)
File Attributes

The first byte can have the following special values:

Bit Mask Description

Page 14 of 22File Allocation Table - Wikipedia, the free encyclopedia

2/20/2008http://en.wikipedia.org/w/index.php?title=File_Allocation_Table&printable=yes

0x0b 1

An attribute value of 0x0F is used to designate a long file name entry.

0 0x01 Read Only
1 0x02 Hidden
2 0x04 System
3 0x08 Volume Label (only allowed in entry in root directory)
4 0x10 Subdirectory
5 0x20 Archive
6 0x40 Device (internal use only, never found on disk)
7 0x80 Unused

0x0c 1
Reserved; two bits are used by NT and later versions to encode case information
(see below); otherwise 0[17]

0x0d 1 Create time, fine resolution: 10ms units, values from 0 to 199.

0x0e 2

Create time. The hour, minute and second are encoded according to the
following bitmap:

Note that the seconds is recorded only to a 2 second resolution. Finer resolution
for file creation is found at offset 0x0d.

Bits Description
15-11 Hours (0-23)
10-5 Minutes (0-59)
4-0 Seconds/2 (0-29)

0x10 2

Create date. The year, month and day are encoded according to the following
bitmap:

Bits Description
15-9 Year (0 = 1980, 127 = 2107)
8-5 Month (1 = January, 12 = December)
4-0 Day (1 - 31)

0x12 2 Last access date; see offset 0x10 for description.

0x14 2 EA-Index (used by OS/2 and NT) in FAT12 and FAT16, High 2 bytes of first
cluster number in FAT32

0x16 2 Last modified time; see offset 0x0e for description.
0x18 2 Last modified date; see offset 0x10 for description.

0x1a 2
First cluster in FAT12 and FAT16. Low 2 bytes of first cluster in FAT32.
Entries with the Volume Label flag, subdirectory ".." pointing to root, and
empty files with size 0 should have first cluster 0.

Page 15 of 22File Allocation Table - Wikipedia, the free encyclopedia

2/20/2008http://en.wikipedia.org/w/index.php?title=File_Allocation_Table&printable=yes

Long file names

Long File Names (LFN) are stored on a FAT file system using a trick—adding (possibly multiple)
additional directory entries into the file allocation table before the normal file entry. The additional
entries are marked with the Volume Label, System, Hidden, and Read Only attributes (yielding 0x0F),
which is a combination that is not expected in the MS-DOS environment, and therefore ignored by MS-
DOS programs and third-party utilities. Notably, a directory containing only volume labels is considered
as empty and is allowed to be deleted; such a situation appears if files created with long names are
deleted from plain DOS.

A checksum also allows verification of whether a long file name matches the 8.3 name; such a mismatch
could occur if a file was deleted and re-created using DOS in the same directory position. The checksum
is calculated using the algorithm below. (Note that pFcbName is a pointer to the name as it appears in a
regular directory entry, i.e. the first eight characters are the filename, and the last three are the extension.
The dot is implicit. Any unused space in the filename is padded with spaces (ASCII 0x20) char. For
example, "Readme.txt" would be "README TXT".)

unsigned char lfn_checksum(const unsigned char *pFcbName)
{
 int i;
 unsigned char sum=0;

 for (i=11; i; i--)
 sum = ((sum & 1) << 7) + (sum >> 1) + *pFcbName++;
 //sum = ((sum & 1) ? 0x80 : 0) + (sum >> 1) + *pFcbName++;
 return sum;
}

Older versions of PC-DOS mistake LFN names in the root directory for the volume label, and are likely
to display an incorrect label.

Each phony entry can contain up to 13 UTF-16 characters (26 bytes) by using fields in the record which
contain file size or time stamps (but not the starting cluster field, for compatibility with disk utilities, the
starting cluster field is set to a value of 0). See 8.3 filename for additional explanations. Up to 20 of
these 13-character entries may be chained, supporting a maximum length of 255 UTF-16 characters.[17]

LFN entries use the following format:

0x1c 4 File size. Entries with the Volume Label or Subdirectory flag set should have a
size of 0.

Byte
Offset Length Description

0x00 1 Sequence Number
0x01 10 Name characters (five UTF-16 characters)
0x0b 1 Attributes (always 0x0F)
0x0c 1 Reserved (always 0x00)
0x0d 1 Checksum of DOS file name

Page 16 of 22File Allocation Table - Wikipedia, the free encyclopedia

2/20/2008http://en.wikipedia.org/w/index.php?title=File_Allocation_Table&printable=yes

If a filename contains only lowercase letters, or is a combination of a lowercase basename with an
uppercase extension, or vice-versa; and has no special characters, and fits within the 8.3 limits, a VFAT
entry is not created on Windows NT and later versions such as XP. Instead, two bits in byte 0x0c of the
directory entry are used to indicate that the filename should be considered as entirely or partially
lowercase. Specifically, bit 4 means lowercase extension and bit 3 lowercase basename, which allows
for combinations such as "example.TXT" or "HELLO.txt" but not "Mixed.txt". Few other operating
systems support this. This creates a backwards-compatibility problem with older Windows versions (95,
98, ME) that see all-uppercase filenames if this extension has been used, and therefore can change the
name of a file when it is transported, such as on a USB flash drive. Current 2.6.x versions of Linux will
recognize this extension when reading (source: kernel 2.6.18 /fs/fat/dir.c and fs/vfat/namei.c); the mount
option shortname determines whether this feature is used when writing.[18]

Third-party extensions

Before Microsoft added support for long filenames and creation/access time stamps, bytes 0x0C–0x15
of the directory entry were used by alternative operating systems to store additional metadata. These
included:

0x0e 12 Name characters (six UTF-16 characters)
0x1a 2 First cluster (always 0x0000)
0x1c 4 Name characters (two UTF-16 characters)

Byte
Offset Length System Description

0x0C 2 RISC OS File type, 0x000 - 0xFFF

0x0C 1 DOS Plus

User-defined file attributes F1-F4

Bit Mask Description
7 0x80 F1
6 0x40 F2
5 0x20 F3
4 0x10 F4

0x0D 1 DR-DOS For a deleted file, the original first character of the
filename.

0x0E 2 DR-DOS and
FlexOS Encrypted file password

0x0E 2 ANDOS File address in the memory

0x10 4 DR-DOS 7
For a deleted file, its original file time and date; deleted
files have their normal time and date fields set to the time of
deletion

0x12 2 DR-DOS 6 and
FlexOS File owner ID

Page 17 of 22File Allocation Table - Wikipedia, the free encyclopedia

2/20/2008http://en.wikipedia.org/w/index.php?title=File_Allocation_Table&printable=yes

FAT licensing
Microsoft applied for, and was granted, a series of patents for key parts of the FAT file system in the
mid-1990s. Being almost universally compatible and well-understood, FAT is frequently chosen as an
interchange format for flash media used in digital cameras and PDAs.

On 2003-12-03 Microsoft announced it would be offering licenses for use of its FAT specification and
"associated intellectual property", at the cost of a US$0.25 royalty per unit sold, with a $250,000
maximum royalty per license agreement.[19]

To this end, Microsoft cited four patents on the FAT file system as the basis of its intellectual property
claims. All four pertain to long-filename extensions to FAT first seen in Windows 95:

U.S. Patent 5,745,902 (http://patft.uspto.gov/netacgi/nph-Parser?patentnumber=5745902) -
Method and system for accessing a file using file names having different file name formats. Filed
July 6, 1992. This covered a means of generating and associating a short, 8.3 filename with long
one (for example, "Microsoft.txt" with "MICROS~1.TXT") and a means of enumerating
conflicting short filenames (for example, "MICROS~2.TXT" and "MICROS~3.TXT"). It is
unclear whether this patent would cover an implementation of FAT without explicit long filename
capabilities. Hard links in Unix file systems do not appear to be prior art: deleting a FAT file via
its long name will also remove its short name. Renaming a file to a "short" name also updates the
long file name for coherency; similarly, renaming a file to a "long" name will allocate a new
"short" name. In NTFS, hard links and dual names are separate concepts and each hard link has
two names. Finally, at the API level, both names are always provided together when a directory
lookup is requested from the system; they do not appear as two separate files and do not have to
be "matched" to determine unique files.

0x14 2 DR-DOS and
FlexOS

File permissions bitmap (execute permissions are only used
by FlexOS):

Bit Mask Description
0 0x0001 Owner delete requires password
1 0x0002 Owner execute requires password
2 0x0004 Owner write requires password
3 0x0008 Owner read requires password
4 0x0010 Group delete requires password
5 0x0020 Group execute requires password
6 0x0040 Group write requires password
7 0x0080 Group read requires password
8 0x0100 World delete requires password
9 0x0200 World execute requires password
10 0x0400 World write requires password
11 0x0800 World read requires password

Page 18 of 22File Allocation Table - Wikipedia, the free encyclopedia

2/20/2008http://en.wikipedia.org/w/index.php?title=File_Allocation_Table&printable=yes

U.S. Patent 5,579,517 (http://patft.uspto.gov/netacgi/nph-Parser?patentnumber=5579517) -
Common name space for long and short filenames. Filed for on 1995-04-24. This covers the
method of chaining together multiple consecutive 8.3 named directory entries to hold long
filenames, with some of the entries specially marked to prevent their confusing older, long
filename-unaware FAT implementations.

The Public Patent Foundation successfully challenged this patent; the claims were rejected
[20] on 2004-09-14, due to prior disclosure[21] of the claimed techniques in patents U.S.
Patent 5,307,494 (http://patft.uspto.gov/netacgi/nph-Parser?patentnumber=5307494) and
U.S. Patent 5,367,671 (http://patft.uspto.gov/netacgi/nph-Parser?patentnumber=5367671).
This decision was later overturned by the Patent Office on 2006-01-10.

U.S. Patent 5,758,352 (http://patft.uspto.gov/netacgi/nph-Parser?patentnumber=5758352) -
Common name space for long and short filenames. Filed on 1996-09-05. This is very similar to
5,579,517.

The Public Patent Foundation successfully challenged this patent; The USPTO rejected this
patent on 2005-10-05, on the grounds that "the six assignees names were incorrect".[22][23]
This decision was also later overturned by the Patent Office on 2006-01-10.

U.S. Patent 6,286,013 (http://patft.uspto.gov/netacgi/nph-Parser?patentnumber=6286013) -
Method and system for providing a common name space for long and short file names in an
operating system. Filed on 1997-01-28. This makes claims on the methods used when Windows
95, Windows 98 and Windows Me expose long filenames to their MS-DOS compatibility layer. It
does not appear to affect any non-Microsoft FAT implementations.

Many technical commentators have concluded that these patents only cover FAT implementations that
include support for long filenames, and that removable solid state media and consumer devices only
using short names would be unaffected.

Additionally, in the document "Microsoft Extensible Firmware Initiative FAT 32 File System
Specification, FAT: General Overview of On-Disk Format" published by Microsoft (version 1.03, 2000-
12-06), Microsoft specifically grants a number of rights, which many readers have interpreted as
permitting operating system vendors to implement FAT.

Microsoft is not the only company to have applied for patents for parts of the FAT file system. Other
patents affecting FAT include:

U.S. Patent 5,367,671 (http://patft.uspto.gov/netacgi/nph-Parser?patentnumber=5367671) -
System for accessing extended object attribute (EA) data through file name or EA handle linkages
in path tables. Filed on 1990-09-25 by Barry A. Feigenbaum and Felix Miro of IBM, this makes
claims on the methods used by OS/2, Windows NT, and Linux for storing extended attribute data
in the "EA DATA. SF" file.

Appeal

As there was widespread call for these patents to be re-examined, the Public Patent Foundation
(PUBPAT) submitted evidence to the US Patent and Trade Office (USPTO) disputing the validity of
these patents, including prior art references from Xerox and IBM. The USPTO acknowledged that the
evidence raised "substantial new question[s] of patentability," and opened an investigation into the
validity of Microsoft's FAT patents.[24]

On 2004-09-30 the USPTO rejected all claims of U.S. Patent 5,579,517

Page 19 of 22File Allocation Table - Wikipedia, the free encyclopedia

2/20/2008http://en.wikipedia.org/w/index.php?title=File_Allocation_Table&printable=yes

(http://patft.uspto.gov/netacgi/nph-Parser?patentnumber=5579517), based primarily on evidence
provided by PUBPAT. Dan Ravicher, the foundation's executive director, said, "The Patent Office has
simply confirmed what we already knew for some time now, Microsoft's FAT patent is bogus."

According to the PUBPAT press release, "Microsoft still has the opportunity to respond to the Patent
Office's rejection. Typically, third party requests for reexamination, like the one filed by PUBPAT, are
successful in having the subject patent either narrowed or completely revoked roughly 70% of the time."

On 2005-10-05 the Patent Office announced that, following the re-examination process, it had again
rejected all claims of patent 5,579,517, and it additionally found U.S. Patent 5,758,352
(http://patft.uspto.gov/netacgi/nph-Parser?patentnumber=5758352) invalid on the grounds that the patent
had incorrect assignees.

Finally, on 2006-01-10 the Patent Office ruled that features of Microsoft's implementation of the FAT
system were "novel and non-obvious", reversing both earlier non-final decisions.[25]

See also
Comparison of file systems
Drive letter assignment
Software patent
List of file systems
Rock Ridge and Joliet — systems for CDs that add long file names similar to what VFAT did for
FAT.

References

1. ^ a b c Duncan, Ray (1989). Design goals and implementation of the new High Performance File System
(http://cd.textfiles.com/megademo2/INFO/OS2_HPFS.TXT). Microsoft Systems Journal. [Note: This
particular text file has a number of 'scan' errors; e.g., "Ray" is the author's correct name; not 'Roy' as text
shows.]

2. ^ Brian Jenkinson, Sammes, A. J. (2000). Forensic Computing: A Practitioner's Guide (Practitioner Series).
Berlin: Springer, 157. ISBN 1-85233-299-9. “...only 2^12 (that is, 4096) allocation units or clusters can be
addressed. In fact, the number is less than this, since 000h and 001h are not used and FF0h to FFFh are
reserved or used for other purposes, leaving 002h to FEFh (2 to 4079) as the range of possible clusters.”

3. ^ Andries Brouwer. FAT Under Linux (http://www.win.tue.nl/~aeb/linux/fs/fat/fat-2.html). Linux source
code related to DOS often contains: #define MSDOS_FAT12 4084 (e.g., see line 76 of KernelAPI:
msdos_fs.h (http://www.kernel-api.org/docs/online/2.2.26/dc/dd8/msdos__fs_8h-source.html).).

4. ^ Errors Creating Files or Folders in the Root Directory (http://support.microsoft.com/kb/120138). Microsoft
Help and Support (December 16, 2004). Retrieved on 2006-10-14.

5. ^ mkdosfs man page (http://www.die.net/doc/linux/man/man8/mkdosfs.8.html).
6. ^ a b Limitations of FAT32 File System (http://support.microsoft.com/kb/184006/en-us). Microsoft Help and

Support (December 16, 2004). Retrieved on 2006-10-14.
7. ^ Fdisk Does Not Recognize Full Size of Hard Disks Larger than 64 GB

(http://support.microsoft.com/kb/263044). Microsoft Help and Support (January 27, 2007). Retrieved on
2007-03-08.

8. ^ Limitations of the FAT32 File System in Windows XP (http://support.microsoft.com/kb/314463/en-us).
Microsoft Help and Support (September 4, 2002). Retrieved on 2007-01-24.

9. ^ Windows XP/2000 FAT32 Formatting Limit (http://www.allensmith.net/Storage/HDDlimit/FAT32.htm).
allensmith.net. Retrieved on 2007-04-08.

10. ^ a b Chen, Raymond (2006). Microsoft TechNet: A Brief and Incomplete History of FAT32

Page 20 of 22File Allocation Table - Wikipedia, the free encyclopedia

2/20/2008http://en.wikipedia.org/w/index.php?title=File_Allocation_Table&printable=yes

(http://www.microsoft.com/technet/technetmag/issues/2006/07/WindowsConfidential/). TechNet Magazine
July 2006.

11. ^ Release notes for v2.5.7 (http://www.kernel.org/pub/linux/kernel/v2.5/ChangeLog-2.5.7). The Linux
Kernel archives (March 12, 2002). Retrieved on 2006-10-14.

12. ^ Bob Eager (October 28, 2000). Implementation of extended attributes on the FAT file system
(http://www.tavi.co.uk/os2pages/eadata.html). Tavi OS/2 pages. Retrieved on 2006-10-14.

13. ^ Matthias Paul (February 20, 2002). Need DOS 6.22 (Not OEM)
(http://groups.google.com/group/alt.msdos.programmer/msg/6b10a1ea602e61e). alt.msdos.programmer.
Retrieved on 2006-10-14.

14. ^ Wally Bass (February 14, 1994). Cluster Size
(http://groups.google.co.uk/group/comp.os.msdos.programmer/msg/79de2d76832cfbd6).
comp.os.msdos.programmer. Retrieved on 2006-10-14.

15. ^ a b c (1991) Microsoft MS-DOS Programmer's Reference : version 5.0. Microsoft press. ISBN 1-55615-
329-5.

16. ^ Andries E. Brouwer (September 20, 2002). The FAT filesystem
(http://www.win.tue.nl/~aeb/linux/fs/fat/fat-1.html). Retrieved on 2006-10-14.

17. ^ a b vinDaci (January 6, 1998). Long Filename Specification (http://www.teleport.com/~brainy/lfn.htm).
Retrieved on 2007-03-13.

18. ^ mount(8): mount file system – Linux man page (http://linux.die.net/man/8/mount).
19. ^ Intellectual Property Licensing – FAT File System

(http://www.microsoft.com/about/legal/intellectualproperty/search/details.mspx?
ip_id=IDAEYWHD&keywords=fat). Microsoft.

20. ^ At PUBPAT's request, patent office rejects Microsoft's FAT patent: Government Relies Heavily on
Evidence Submitted by PUBPAT (http://www.pubpat.org/Microsoft_517_Rejected.htm). Public Patent
Foundation (September 30, 2004). Retrieved on 2006-10-14.

21. ^ Ina Fried (September 30, 2004). Microsoft FAT patent falls flat
(http://news.com.com/Microsoft+FAT+patent+falls+flat/2100-1014_3-5390138.html). CNET News.
Retrieved on 2006-10-14.

22. ^ Andrew Orlowski (October 5, 2005). Microsoft FAT patent rejected - again
(http://www.regdeveloper.co.uk/2005/10/05/microsoft_patent/). The Register. Retrieved on 2006-10-14.

23. ^ Patent Office rejects two Microsoft FAT patents (http://www.out-law.com/default.aspx?page=6202). out-
law.com (June 10, 2005). Retrieved on 2006-10-14.

24. ^ Andrew Orlowski (June 14, 2004). Microsoft's war on GPL dealt patent setback
(http://www.theregister.co.uk/2004/06/14/ms_fat_patent_reexamined/). The Register. Retrieved on 2006-10-
14.

25. ^ Anne Broache (January 10, 2006). Microsoft's file system patent upheld
(http://news.com.com/Microsofts+file+system+patent+upheld/2100-1012_3-6025447.html). CNET News.
Retrieved on 2006-10-14.

External links
ECMA-107 Volume and File Structure of Disk Cartridges for Information Interchange
(http://www.ecma-international.org/publications/standards/Ecma-107.htm), identical to ISO/IEC
9293.
Microsoft Extensible Firmware Initiative FAT 32 File System Specification, FAT: General
Overview of On-Disk Format
(http://www.microsoft.com/whdc/system/platform/firmware/fatgen.mspx)
Understanding FAT32 Filesystems (explained for embedded firmware developers)
(http://www.pjrc.com/tech/8051/ide/fat32.html)
Understanding FAT (http://users.iafrica.com/c/cq/cquirke/fat.htm) including lots of info about
LFNs
Detailed Explanation of FAT Boot Sector (http://support.microsoft.com/kb/140418/) - Microsoft
Knowledge Base Article 140418
Description of the FAT32 File System (http://support.microsoft.com/kb/154997/) - Microsoft

Page 21 of 22File Allocation Table - Wikipedia, the free encyclopedia

2/20/2008http://en.wikipedia.org/w/index.php?title=File_Allocation_Table&printable=yes

This page was last modified on 19 February 2008, at 05:23.
All text is available under the terms of the GNU Free
Documentation License. (See Copyrights for details.)
Wikipedia® is a registered trademark of the Wikimedia
Foundation, Inc., a U.S. registered 501(c)(3) tax-deductible
nonprofit charity.

Knowledge Base Article 154997
FAT12 / FAT16/ FAT32 Filesystem implementation for *nix
(http://sourceforge.net/projects/libfat/) - Includes libfat libraries and fusefat , a FUSE filesystem
driver
MS-DOS: Directory and Subdirectory Limitations (http://support.microsoft.com/kb/39927/) -
Microsoft Knowledge Base Article 39927
Overview of FAT, HPFS, and NTFS File Systems (http://support.microsoft.com/kb/100108/) -
Microsoft Knowledge Base Article 100108
Volume and file size limits of FAT file systems
(http://www.microsoft.com/technet/prodtechnol/winxppro/reskit/c13621675.mspx) - Microsoft
Technet
Microsoft TechNet: A Brief and Incomplete History of FAT32
(http://www.microsoft.com/technet/technetmag/issues/2006/07/WindowsConfidential/) by
Raymond Chen
FAT 32 Formatter (http://www.ridgecrop.demon.co.uk/index.htm?fat32format.htm): allows
formatting volumes larger than 32GB with FAT32 under Windows 2000, Windows XP and
Windows Vista
Fdisk Does Not Recognize Full Size of Hard Disks Larger than 64 GB
(http://support.microsoft.com/kb/263044) - Microsoft Knowledge Base Article 263044.
Microsoft Windows XP - FAT32 File System
(http://web.archive.org/web/20050319235548/www.microsoft.com/resources/documentation/Wind
-us/prkc_fil_cycz.asp) - Copy made by Internet Archive Wayback Machine
(http://www.archive.org/) of an article with summary of limits in FAT32 which is not longer
available on Microsoft website.
EFSL (http://sf.net/projects/efsl), Open source FAT implementation for embedded devices
How to convert FAT to NTFS (http://practicalpc.co.uk/computing/windows/xpfattontfs.htm)

Retrieved from "http://en.wikipedia.org/wiki/File_Allocation_Table"

Categories: All articles with unsourced statements | Articles with unsourced statements since January
2008 | Articles with unsourced statements since February 2008 | Articles with unsourced statements
since September 2007 | Articles with unsourced statements since August 2007 | Articles with unsourced
statements since July 2007 | Disk file systems | DOS on IBM PC compatibles | Windows disk file
systems | Windows components

Page 22 of 22File Allocation Table - Wikipedia, the free encyclopedia

2/20/2008http://en.wikipedia.org/w/index.php?title=File_Allocation_Table&printable=yes

