
Order this document
by AN2153/D
Semiconductor Products Sector
Application Note

AN2153

A Serial Bootloader for Reprogramming
the MC9S12DP256 FLASH Memory
By Gordon Doughman

Field Applications Engineer, Software Specialist
Dayton, Ohio

Introduction

The MC9S12DP256 is a member of the M68HC12 Family of 16-bit
microcontrollers (MCU) containing 262,144 bytes of bulk or sector
erasable, word programmable FLASH memory arranged as four
65,536 byte blocks. Including FLASH memory, rather than EPROM or
ROM, on a microcontroller has significant advantages.

For the manufacturer, placing system firmware in FLASH memory
provides several benefits. First, firmware development can be extended
late into the product development cycle by eliminating masked ROM
lead times. Second, when a manufacturer has several products based
on the same microcontroller, it can help eliminate inventory problems
and lead times associated with ROM-based microcontrollers. Finally, if
a severe bug is found in the product’s firmware during the manufacturing
process, the in-circuit reprogrammability of FLASH memory prevents the
manufacturer from having to scrap any work-in-process.

The ability of FLASH memory to be electrically erased and
reprogrammed also provides benefits for the manufacturer’s end
customers. The customer’s products can be updated or enhanced with
new features and capabilities without having to replace any components
or return a product to the factory.
© Motorola, Inc., 2001

TM

Application Note
Unlike the M68HC11 Family, the MC9S12DP256 does not have a
bootstrap ROM containing firmware to allow initial programming of the
FLASH directly through one of the on-chip serial communications
interface (SCI) ports. Initial on-chip FLASH programming requires either
special test and handling equipment to program the device before it is
placed in the target system or a background debug module (BDM)
programming tool available from Motorola or a third party vendor.

The MC9S12DP256’s four on-chip FLASH arrays contain two variable
size, erase protectable areas as shown in Figure 1. While the majority
of the bootloader could be contained in any of the protected areas, the
protected high area in the $C000–$FFFF memory range must at least
contain reset and interrupt vectors that point to a jump table. In most
cases, unless a complex or sophisticated communication protocol is
required that will not fit into 16 K, it is easiest to place the entire
bootloader into the protected high area of block zero.

Erasing and programming the on-chip FLASH memory of the
MC9S12DP256 presents some unique challenges. Even though FLASH
block zero has two separate erase protected areas, code cannot be run
out of either protected area while the remainder of the block is erased or
programmed. While it is possible to run code from one FLASH block
while erasing or reprogramming another, adopting such a strategy would
complicate the overall implementation of the bootloader. Consequently,
during the erase and reprogram process, the code must reside in other
on-chip memory or in external memory. In addition, because the reset
and interrupt vectors reside in the erase protected area, they cannot be
changed. This necessitates a secondary reset/interrupt vector table be
placed outside the protected FLASH memory area.

The remainder of this application note explores the requirements of a
serial bootloader and the implementation of the programming algorithm
for the MC9S12DP256’s FLASH.
AN2153

2 MOTOROLA

Application Note
Overview of the MC9S12DP256’s FLASH
Figure 1. MC9S12DP256 Memory Map

Overview of the MC9S12DP256’s FLASH

The MC9S12DP256’s 256 K of on-chip FLASH memory is composed of
four 65,536 byte blocks. Each block is arranged as 32,768 16-bit words
and may be read as bytes, words, or misaligned words. Access time is
one bus cycle for bytes and aligned words reads and two bus cycles for
misaligned word reads. Write operations for program and erase
operations can be performed only as an aligned word. Each 64-K block
is organized in 1024 rows of 32 words. An erase sector contains 8 rows
or 512 bytes. Erase operations may be performed on a sector as small
as 512 bytes or on the entire 65,536-byte block. An erased word reads
$FFFF and a programmed word reads $0000.

$0000
Flash Control Registers
Register Base + $100

$3E

$3F

16K Paged
Memory

$4000

$8000

$C000

$FFFF

$30 $31 $32 $33 $34 $35 $36 $37 $38 $39 $3A $3B $3C $3D $3E $3F

Block 3 Block 2 Block 1 Block 0

Protected Low Area
0.5K, 1K, 2K, 4K

Protected High Area
2K, 4K, 8K, 16K

$FF00 - $FF0F, Access Key, Protection, Security
AN2153

MOTOROLA 3

Application Note
The programming voltage required to program and erase the FLASH is
generated internally by on-chip charge pumps. Program and erase
operations are performed by a command driven interface from the
microcontroller using an internal state machine. The completion of a
program or erase operation is signaled by the setting of the CCIF flag
and may optionally generate an interrupt. All FLASH blocks can be
programmed or erased at the same time; however, it is not possible to
read from a FLASH block while it is being erased or programmed.

Each 64-K block contains hardware interlocks which protect data from
accidental corruption. As shown in Figure 1, the upper 32 K of block
zero can be accessed through the 16-Kbyte PPAGE window or at two
fixed address 16-K address ranges. One protected area is located in the
upper address area of the fixed page address range from $C000–$FFFF
and is normally used for bootloader code. Another area is located in the
lower portion of the fixed page address range from $4000–$7FFF.
Additional protected memory areas are present in the three remaining
64-K FLASH blocks; however, they are only accessible through the 16-K
PPAGE window.

FLASH Control
Registers

The control and status registers for all four FLASH blocks occupy
16 bytes in the input/output (I/O) register area. To accommodate the four
FLASH blocks while occupying a minimum of register address space,
the FLASH control register address range is divided into two sections.
The first four registers, as shown in Figure 2, apply to all four memory
blocks. The remaining 12 bytes of the register space have duplicate sets
of registers, one for each FLASH bank. The active register bank is
selected by the BKSEL bits in the unbanked FLASH configuration
register (FCNFG). Note that only three of the banked registers contain
usable status and control bits; the remaining nine registers are reserved
for factory testing or are unused.
AN2153

4 MOTOROLA

Application Note
Overview of the MC9S12DP256’s FLASH
Figure 2. FLASH Status and Control Registers

FLASH Protection The protected areas of each FLASH block are controlled by four bytes
of FLASH memory residing in the fixed page memory area from
$FF0A–$FF0D. During the microcontroller reset sequence, each of the
four banked FLASH protection registers (FPROT) is loaded from values
programmed into these memory locations. As shown in Figure 3,
location $FF0A controls protection for block three, $FF0B controls
protection for block two, $FF0C controls protection for block one, and
$FF0D controls protection for block zero.

The values loaded into each FPROT register determine whether the
entire block or just subsections are protected from being accidentally
erased or programmed. As mentioned previously, each 64-K block can
have two protected areas. One of these areas, known as the lower
protected block, grows from the middle of the 64-K block upward. The
other, known as the upper protected block, grows from the top of the
64-K block downward. In general, the upper protected area of FLASH
block zero is used to hold bootloader code since it contains the reset and
interrupt vectors. The lower protected area of block zero and the
protected areas of the other FLASH blocks can be used for critical
parameters that would not change when program firmware was updated.

Bit 7 6 5 4 3 2 1 Bit 0

FCLKDIV FDIVLD PRDIV8 FDIV5 FDIV4 FDIV3 FDIV2 FDIV1 FDIV0 $x100

FSEC KEYEN NV6 NV5 NV4 NV3 NV2 SEC01 SEC00 $x101

Reserved 0 0 0 0 0 0 0 0 $x102

FCNFG CBEIE CCIE KEYACC 0 0 0 BKSEL1 BKSEL1 $X103

Unbanked

Banked

FPROT FPOPEN F FPHDIS FPHS1 FPHS0 FPLDIS FPLS1 FPLS0 $X104

FSTAT CBEIF CCIF PVIOL ACCERR 0 BLANK 0 0 $X105

FCMD 0 ERASE PROG 0 0 ERVER 0 MASS $X106

Reserved 0 0 0 0 0 0 0 0
$X107–

$x10F
AN2153

MOTOROLA 5

Application Note
The FPOPEN bit in each FPROT register determines whether the entire
FLASH block or subsections of it can be programmed or erased. When
the FPOPEN bit is erased (1), the remainder of the bits in the register
determine the state of protection and the size of each protected block. In
its programmed state (0), the entire FLASH block is protected and the
state of the remaining bits within the FPROT register is irrelevant.

Figure 3. FLASH Protection and Security Memory Locations

The FPHDIS and FPLDIS bits determine the protection state of the
upper and lower areas within each 64-K block respectively. The erased
state of these bits allows erasure and programming of the two protected
areas and renders the state of the FPHS[1:0] and FPLS[1:0] bits
immaterial. When either of these bits is programmed, the FPHS[1:0] and
FPLS[1:0] bits determine the size of the upper and lower protected
areas. The tables in Figure 4 summarize the combinations of the
FPHS[1:0] and FPLS[1:0] bits and the size of the protected area
selected by each.

Address Description

$FF00–$FF07 Security back door comparison key

$FF08–$FF09 Reserved

$FF0A Protection byte for FLASH block 3

$FF0B Protection byte for FLASH block 2

$FF0C Protection byte for FLASH block 1

$FF0D Protection byte for FLASH block 0

$FF0E Reserved

$FF0F Security byte
AN2153

6 MOTOROLA

Application Note
Overview of the MC9S12DP256’s FLASH
Figure 4. FLASH Protection Select Bits

The FLASH protection registers are loaded during the reset sequence
from address $FF0D for FLASH block 0, $FF0C for FLASH block 1,
$FF0B for FLASH block 2 and $FF0A for FLASH block 3. This is
indicated by the “F” in the reset row of the register diagram in the
MC9S12DP256 data book. This register determines whether a whole
block or subsections of a block are protected against accidental program
or erase. Each FLASH block can have two protected areas, one starting
from relative address $8000 (called lower) toward higher addresses and
the other growing downward from $FFFF (called higher). While the later
is mainly targeted to hold the bootloader code since it covers the vector
space (FLASH 0), the other area may be used to keep critical
parameters. Trying to alter any of the protected areas will result in a
protect violation error, and bit PVIOL will be set in the FLASH status
register FSTAT.

NOTE: A mass or bulk erase of the full 64-Kbyte block is only possible when the
FPLDIS and FPHDIS bits are in the erased state.

FLASH Security The security of a microcontroller’s program and data memories has long
been a concern of companies for one main reason. Because of the
considerable time and money that is invested in the development of
proprietary algorithms and firmware, it is extremely desirable to keep the
firmware and associated data from prying eyes. This was an especially
difficult problem for earlier M68HC12 Family members as the
background debug module (BDM) interface provided easy, uninhibited
access to the FLASH and EEPROM contents using a 2-wire connection.
Later revisions of the original D Family parts provided a method that

FPHS[1:0] Protected
Size FPLS[1:0] Protected

Size

0:0 2 K 0:0 512 bytes

0:1 4 K 0:1 1 K

1:0 8 K 1:0 2 K

1:1 16 K 1:1 4 K
AN2153

MOTOROLA 7

Application Note
allowed a customer’s firmware to disable the BDM interface (BDM
lockout) once the part had been placed in the circuit and programmed.
While this prevents the FLASH and EEPROM from being easily
accessed in-circuit, it does not prevent a D Family part from being
removed from the circuit and placed in expanded mode so the FLASH
and EEPROM can be read.

The security features of the MC9S12DP256 have been greatly
enhanced. While no security feature can be 100 percent guaranteed to
prevent access to an MCU’s internal resources, the MC9S12DP256’s
security mechanism makes it extremely difficult to access the FLASH or
EEPROM contents. Once the security mechanism has been enabled,
access to the FLASH and EEPROM either through the BDM or the
expanded bus is inhibited. Gaining access to either of these resources
may be accomplished only by erasing the contents of the FLASH and
EEPROM or through a built-in back door mechanism. While having a
back door mechanism may seem to be a weakness of the security
mechanism, the target application must specifically support this feature
for it to operate.

Erasing the FLASH or EEPROM can be accomplished using one of two
methods. The first method requires resetting the target MCU in special
single-chip mode and using the BDM interface. When a secured device
is reset in special single-chip mode, a special BDM security ROM
becomes active. The program in this small ROM performs a blank check
of the FLASH and EEPROM memories. If both memory spaces are
erased, the BDM firmware temporarily disables device security, allowing
full BDM functionally. However, if the FLASH or EEPROM are not blank,
security remains active and only the BDM hardware commands remain
functional. In this mode, the BDM commands are restricted to reading
and writing the I/O register space. Because all other BDM commands
and on-chip resources are disabled, the contents of the FLASH and
EEPROM remain protected. This functionality is adequate to manipulate
the FLASH and EEPROM control registers to erase their contents.

NOTE: Use of the BDM interface to erase the FLASH and EEPROM memories
is not present in the initial mask set (0K36N) of the MC9S12DP256.
Great care must be exercised to ensure that the microcontroller is not
programmed in a secure state unless the back door mechanism is
supported by the target firmware.
AN2153

8 MOTOROLA

Application Note
Overview of the MC9S12DP256’s FLASH
The second method requires the microcontroller to be connected to
external memory devices and reset in expanded mode where a program
can be executed from the external memory to erase the FLASH and
EEPROM. This method may be preferred before parts are placed in a
target system.

As shown in Figure 5, the security mechanism is controlled by the two
least significant bits in the security byte. Because the only unsecured
combination is when SEC1 has a value of 1 and SEC0 has a value of 0,
the microcontroller will remain secured even after the FLASH and
EEPROM are erased, since the erased state of the security byte is $FF.
As previously explained, even though the device is secured after being
erased, the part may be reset in special single-chip mode, allowing
manipulation of the microcontroller via the BDM interface. However,
after erasing the FLASH and EEPROM, the microcontroller can be
placed in the unsecured state by programming the security byte with a
value of $FE. Note that because the FLASH must be programmed one
aligned word at a time and because the security byte resides at an odd
address ($FF0F), the word at $FF0E must be programmed with a value
of $FFFE.

Figure 5. Security Bits

Utilizing the
FLASH Security
Back Door

In normal single-chip or normal expanded operating modes, the security
mechanism may be temporarily disabled only through the use of the
back door key access feature. Because the back door mechanism
requires support by the target firmware, it is impossible for the back door
mechanism to be used to defeat device security unless the capability is
designed into the target application. To disable security, the firmware
must have access to the 64-bit value stored in the security back door
comparison key located in FLASH memory from $FF00–$FF07. If

SEC[1:0] Security State

0:0 Secured

0:1 Secured

1:0 Unsecured

1:1 Secured
AN2153

MOTOROLA 9

Application Note
operating in single-chip mode, the key would typically be provided to the
firmware through one of the on-chip serial ports. In addition, back door
security bypass must be enabled by leaving the most significant bit of the
Security byte at $FF0F erased. To disable the back door security bypass
feature, this bit should be programmed to zero.

Once the application receives the 64-bit key, it must set the KEYACC bit
in the FCNFG register. After setting the KEYACC bit, the firmware must
write the received 64-bit key to the security back door comparison key
memory locations ($FF00–$FF07) as four 16-bit words, in sequential
order. Finally, the KEYACC bit must be cleared. If all four 16-bit words
written to the comparison key memory area matched the corresponding
values stored in FLASH, the MCU will be unsecured by forcing the
SEC[1:0] bits in the FSEC register to the unsecured state. Note that this
operation only temporarily disables the device security. The next time
the MCU is reset, the SEC[1:0] bits will be loaded from the security byte
at $FF0F

FLASH Program
and Erase
Overview

All FLASH program and erase timings are handled by a hardware state
machine, freeing the CPU to perform other tasks during these
operations. The timebase for the state machine is derived from the
oscillator clock via a programmable down counter. Program and erase
operations are accomplished by writing values to the FCMD register.
Four commands are recognized in the current implementation and are
summarized in Figure 6.

Figure 6. FLASH Program and Erase Commands

Command Operation Description

$20 Memory program Program 1 aligned word, 2 bytes

$40 Sector erase Erase a 512-byte sector

$41 Mass erase Erase a 64-Kbyte block

$05 Erase verify Verify erasure of a 64-Kbyte block

Other Illegal Generate an access error
AN2153

10 MOTOROLA

Application Note
Overview of the MC9S12DP256’s FLASH
 The command register and the associated address and data registers
are implemented as a 2-stage first in, first out (FIFO) command buffer.
This configuration allows a new command to be issued while the
hardware state machine completes the previously issued command.
The main reason for this design is to decrease programming time.
Without the 2-stage FIFO command buffer, the programing voltage
would have to be removed from the FLASH array at the end of each
program command to avoid exceeding the high voltage active time, tHV,
specification. Applying and removing the programming voltage after
each program command would double the time required to program an
aligned word. If program commands are continuously available to the
state machine, it will keep high voltage applied to the array if the program
command operates on the same 64-byte row. If the command in the
second stage of the FIFO buffer has changed, the address is not within
the same 64-byte row or the command buffer is empty, the high voltage
will be removed and reapplied with a new command if required.

To aid the development of a multitasking environment where the CPU
can perform other tasks while performing program and erase operations,
the FLASH module control registers provide the ability to generate
interrupts when a command completes or the command buffer is empty.
When the command buffers empty interrupt enable (CBEIE) bit is set, an
interrupt is generated whenever the command buffers empty interrupt
flag (CBEIF) is set. When the command complete interrupt enable
(CCIE) bit is set, an interrupt is generated when the command complete
interrupt flag (CCIF) is set. Note that the CCIF flag is set at the
completion of each command while the CBEIF is set when both stages
of the FIFO are empty.

NOTE: Because the interrupt vectors are located in FLASH block zero, memory
locations in block zero cannot be erased or programmed when utilizing
FLASH interrupts in a target application.
AN2153

MOTOROLA 11

Application Note
FLASH Erasure As previously discussed, each 64-K block is organized in 1024 rows of
32 words. An erase sector contains 8 rows or 512 bytes. Erase
operations may be performed on a sector as small as 512 bytes or on
the entire 65,536 byte block. An erased word reads $FFFF and a
programmed word reads $0000. Program and erase operations are very
similar, differing only in the command written to the FCMD register and
the data written to the FLASH memory array. The FLASH state machine
erase and verify command operation is depicted in the flowchart of
Figure 7.

Figure 7. Erase and Verify Flowchart

Before beginning either an erase or program operation, it is necessary
to write a value to the FCLKDIV register. The value written to the
FCLKDIV register programs a down counter used to divide the oscillator
clock, producing a 150-kHz to 200-kHz clock source used to drive the
FLASH memory’s state machine. The most significant bit of the
FCLKDIV register, when set, indicates that the register has been

WRITE BKSEL[1:0]
BITS

WRITE PPAGE
REGISTER

CBEIF
FLAG
SET

?

WRITE ALIGNED
DATA WORD

WRITE COMMAND
TO FCMD REGISTER

NO

YES

FLASH ARRAY
PROTECTED OR
BAD COMMAND

YESNO

CLEAR CBEIF FLAG

ACCERR
OR PVIOL
FLAG SET

?

NO

DELAY 5 BUS CYCLES

COMMAND
COMPLETED

CCIF
FLAG
SET

?

AN2153

12 MOTOROLA

Application Note
Overview of the MC9S12DP256’s FLASH
initialized. If FDIVLD is clear, it indicates that the register has not been
written to since the part was last reset. Attempting to erase or program
the FLASH without initializing the FCLKDIV register will result in an
access error and the command will not be executed.

A combination of the PRDIV8 and FDIV[5:0] bits is used to divide the
oscillator clock to the 150-kHz to 200-kHz range required by the
FLASH’s state machine. The PRDIV8 bit is used to control a 3-bit
prescaler. When set, the oscillator clock will be divided by eight before
being fed to the 6-bit programmable down counter. Note that if the
oscillator clock is greater than 12.8 MHz, the PRDIV8 bit must be set to
obtain a proper state machine clock source using the FDIV[5:0] bits. The
formulas for determining the proper value for the FDIV[5:0] bits are
shown in Figure 8.

Figure 8. FCLKDIV Formulas

In the formulas, OSCCLK represents the reference frequency present at
the EXTAL pin, NOT the bus frequency or the PLL output. The INT
function always rounds toward zero and FCLK represents the frequency
of the clock signal that drives the FLASH’s state machine.

NOTE: Erasing or programming the FLASH with an oscillator clock less than
500 kHz should be avoided. Setting FCLKDIV such that the state
machine clock is less than 150 kHz can destroy the FLASH due to high
voltage over stress. Setting FCLKDIV such that the state machine clock
is greater than 200 kHz can result in improperly programmed memory
locations.

if (OSCCLK > 12.8 MHz)
 PRDIV8 = 1
else
 PRDIV8 = 0

if (PRDIV 8 == 1)
 CLK = OSCCLK / 8
else
 CLK = OSCCLK

FCLKDIV[5:0] = INT((CLK / 1000) / 200)

FCLK = CLK / (FCLKDIV[5:0] + 1)
AN2153

MOTOROLA 13

Application Note
After initializing the FCLKDIV register with the proper value, the PPAGE
register and the BKSEL[1:0] bits must be initialized. The PPAGE register
must be written with a value that places the correct 16-K memory block
in the PPAGE window that contains the memory area to be erased. If a
mass (bulk) erase operation is performed on one of the 64-K blocks, the
PPAGE register may be written with any one of the four PPAGE values
associated with a 64-K block. Note that when performing a mass or
sector erase in the address range of one of the two fixed pages,
$4000–$7FFF or $C000–$FFFF, the value of the PPAGE register is
unimportant.

The BKSEL[1:0] bits, located in the FCNFG register, are used to select
the banked status and control registers associated with the 64-K FLASH
block in which the erase operation is to be performed. As shown in
Figure 1, the value of the FLASH block number decreases with
increasing PPAGE values. Closely examining Figure 1 reveals that the
correct value for the BKSEL[1:0] bits is the one’s complement of the
PPAGE[3:2] register bits. Even though the flowchart shows the block
select bits being written before the PPAGE register, these registers may
be written in reverse order. This makes the code implementation straight
forward since the value of the block select bits may be easily derived
from the value written to the PPAGE register.

After initializing the PPAGE register and the block select bits, the
command buffer empty interrupt flag (CBEIF) bit should be checked to
ensure that the address, data and command buffers are empty. If the
CBEIF bit is set, the buffers are empty and a program or erase command
sequence can be started. The next three steps in the flowchart must be
strictly adhered to. Any intermediate writes to the FLASH control and
status registers or reads of the FLASH block on which the operation is
being performed will cause the access error (ACCERR) flag to be set
and the operation will be immediately terminated. For a mass erase
operation, the address of the aligned data word may be any valid
address in the 64-K block. For a sector erase, only the upper seven
address bits are significant, the lower eight bits are ignored. For all erase
operations, the data written to the FLASH block is ignored.
AN2153

14 MOTOROLA

Application Note
Overview of the MC9S12DP256’s FLASH
After writing a program or erase command to the FCMD register, the
CBEIF bit must be written with a value of 1 to clear the CBEIF bit and
initiate the command. After clearing the CBEIF bit, the ACCERR and
PVIOL bits should be checked to ensure that the command sequence
was valid. If either of these bits is set, it indicates that an erroneous
command sequence was issued and the command sequence will be
immediately terminated. Note that if either or both of the ACCERR and
PVIOL bits are set, they must be cleared by writing a 1 to each flag’s
associated bit position before another command sequence can be
initiated. Five bus cycles after the CBEIF bit is cleared, the CCIF flag will
be cleared by the state machine indicating that the command was
successfully begun. If a previous command has not been issued, the
CBEIF bit will become set, indicating that the address, data, and
command buffers are available to begin a new command sequence.

Once the erase command has completed, erasure of the sector or block
should be verified to ensure that all locations contain $FF. When erasing
a 512-byte sector, each byte or word must be checked for an erased
condition using software. Fortunately, however, the state machine has a
verify command built into the hardware to perform an erase verify on the
contents of any of the 64-K blocks. The command sequence used to
perform an erase verify is identical to that of performing an erase
command except that the erase verify command ($05) is written to the
FCMD register and the block select bits and the PPAGE register need
not be rewritten. If all locations in a 64-K block are erased, a successful
erase verify will cause the BLANK bit in the FSTAT register to be set.
Note that the BLANK bit must be cleared by writing a 1 to its associated
bit position before the next erase verify command is issued.

FLASH
Programming

As mentioned in the previous section, the erase and program operations
follow a nearly identical flow. There are, however, some minor changes
to the flow that can improve the efficiency of the programming process.
To take advantage of the decreased programming time provided by the
2-stage FIFO command buffer, it must be kept full with programming
commands. As the flowchart in Figure 9 shows, rather than waiting for
each programming command to complete, a new programming
command is issued as soon as the CBIEF flag is set. This allows the
programming voltage to remain applied to the array as long as the next
AN2153

MOTOROLA 15

Application Note
aligned word address remains within the same 64-byte row. Therefore,
to minimize programming times, blocks of data to be programmed into
the FLASH array should begin on a 64-byte boundary and be a multiple
of 64 bytes.

Verification of programmed data should be performed only after a block
of data has been programmed and all programming commands have
completed. Performing a read operation on the FLASH array while a
programming command is executing will cause the ACCERR flag to be
set and all current and pending commands are terminated.

Figure 9. Programming Flowchart

WRITE BKSEL[1:0]
BITS

WRITE PPAGE
REGISTER

CBEIF
FLAG
SET

?

WRITE ALIGNED
DATA WORD

WRITE COMMAND
TO FCMD REGISTER

NO

YES

FLASH ARRAY
PROTECTED OR
BAD COMMAND

YES

NO

CLEAR CBEIF FLAG

ACCERR
OR PVIOL
FLAG SET

?

NO

DELAY 5 BUS CYCLES

BLOCK PROGRAM
COMPLETED

DONE
WITH DATA

BLOCK
?

AN2153

16 MOTOROLA

Application Note
General FLASH Serial Bootloader Requirements
General FLASH Serial Bootloader Requirements

A program such as the FLASH serial bootloader has two important
requirements. First, it must have minimal impact on the final product’s
software performance. Second, it should add little or no cost to the
hardware design. Because the MC9S12DP256 includes a variety of
on-chip communications modules, five CAN modules, one J1850
module, two SCI ports, and three SPI modules, no additional external
hardware should be required. Designs incorporating a CAN or J1850
network connection could easily incorporate the existing connection into
the bootloader to download the new FLASH data. For applications not
utilizing a network connection in the basic design, one of the two SCI
ports can be used. In many systems, the SCI may be a part of the
hardware design since it is often used as a diagnostic port. If an RS232
level translator is not included as part of the system design, a small
adapter board can be constructed containing the level translator and
RS232 connector. This board can then be used by service personnel to
update the system firmware. Using such an adapter board prevents the
cost of the level translator and connector from being added to each
system. In addition to the SCI port, a single input pin is required to notify
the serial bootloader startup code to execute the bootloader code or
jump to the system application program.

As mentioned previously, because the MC9S12DP256’s interrupt and
reset vectors reside in the protected bootblock, they cannot be changed
without erasing the bootblock itself. Even though it is possible to erase
and reprogram the bootblock, it is inadvisable to do so. If anything goes
wrong during the process of reprogramming the bootblock, it would be
impossible to recover from the situation without the use of BDM
programming hardware. For this reason, a bootloader should include
support for a secondary interrupt and reset vector table located just
below the protected bootblock area. Each entry in the secondary
interrupt table should consist of a 2-byte address mirroring the primary
interrupt and reset vector table. The secondary interrupt and reset vector
table is utilized by having each vector point to a single JMP instruction
that uses the CPU12’s indexed-indirect program counter relative
addressing mode. This form of the JMP instruction uses four bytes of
AN2153

MOTOROLA 17

Application Note
memory and requires just six CPU clock cycles to execute. For systems
operating at the maximum bus speed of 25.0 MHz, six bus cycles adds
only 240 ns to the interrupt latency. In most applications, this small
amount of additional time will not affect the overall performance of the
system.

Bootloader
S-Record Format

The S-record object file format was designed to allow binary object code
and/or data to be represented in printable ASCII hexadecimal format
allowing easy transportation between computer systems and
development tools. For M68HC12 Family members supporting less than
64 Kbytes of address space, S1 records, which contain a 16-bit address,
are sufficient to specify the location in the device’s memory space where
code and/or data are to be loaded. The load address contained in the S1
record generally corresponds directly to the address of on-chip or
off-chip memory device. For M68HC12 devices that support an address
space greater than 64 Kbytes, S1 records are not sufficient.

Because the M68HC12 Family is a 16-bit microcontroller with a 16-bit
program counter, it cannot directly address a total of more than
64 Kbytes of memory. To enable the M68HC12 Family to address more
than 64 Kbytes of program memory, a paging mechanism was designed
into the architecture. Program memory space expansion provides a
window of 16-Kbyte pages that are located from $8000–$BFFF. An 8-bit
paging register, called the PPAGE register, provides access to a
maximum of 256, 16-Kbyte pages or 4 megabytes of program memory.
While there may never be any devices that contain this much on-chip
memory, the MC68HC812A4 is capable of addressing this much
external memory. In addition, the MC9S12DP256 contains 256 Kbytes
of on-chip FLASH residing in a 1MB address space.

While many high-level debuggers are capable of directly loading linked,
absolute binary object files into a target system’s memory, the
bootloader does not have that ability. The bootloader is only capable of
loading object files that are represented in the S-record format. Because
S1 records only contain a 16-bit address, they are inadequate to specify
a load address for a memory space greater than 64 Kbytes. S2 records,
which contain a 24-bit load address, were originally defined for loading
object files into the memory space of the M68000 Family. It would seem
AN2153

18 MOTOROLA

Application Note
General FLASH Serial Bootloader Requirements
that S2 records would provide the necessary load address information
required for M68HC12 object files. However, as those who are familiar
with the M68000 Family know, the M68000 has a linear (non-paged)
address space. Thus, development tools, such as non-volatile memory
device programmers, interpret the 24-bit address as a simple linear
address when placing program data into memory devices.

Because the M68HC12 memory space expansion is based on 16-Kbyte
pages, there is not a direct one-to-one mapping of the 24-bit linear
address contained in the S2 record to the 16-Kbyte program memory
expansion space. Instead of defining a new S-record type or utilizing an
existing S-record type in a non-standard manner, the bootloader’s
program FLASH command views the MC9S12DP256’s memory space
as a simple linear array of memory that begins at an address of $C0000.
This is the same format in which S-records would need to be presented
to a stand alone non-volatile memory device programmer.

The MC9S12DP256 implements six bits of the PPAGE register which
gives it a 1MB program memory address space that is accessed through
the PPAGE window at addresses $8000–$BFFF. The lower 768-K
portion of the address space, accessed with PPAGE values $00–$2F,
are reserved for external memory when the part is operated in expanded
mode. The upper 256 K of the address space, accessed with PPAGE
values $30–$3F, is occupied by the on-chip FLASH memory. The
mapping between the linear address contained in the S-record and the
16-Kbyte page viewable through the PPAGE is shown in Figure 10.

The generation of S-records that meet these requirements is the
responsibility of the linker and/or S-record generation utility provided by
the compiler/assembler vendor. Cosmic Software’s linker and S-record
generation utility is capable of producing properly formatted S-records
that can be used by the bootloader. Other vendor’s tools may or may not
posses this capability. For those compilers and assemblers that produce
“banked” S-records, an S-record conversion utility, SRecCvt.exe, is
available on the Web that can be used to convert “banked” S-records to
the linear S-record format required by the serial bootloader.

NOTE: The bootloader is limited to receiving S-records containing a maximum
of 64 bytes in the code/data field. If an S-record containing more than
64 bytes in the code/data field is received, an error message will be
displayed.
AN2153

MOTOROLA 19

Application Note
Figure 10. MC9S12DP256 PPAGE to S-Record Address Mapping

The conversion of the linear S-record load address to a PPAGE number
and a PPAGE window address can be performed by the two formulas
shown in Figure 11. In the first formula, PageNum is the value written to
the PPAGE register, PPAGEWinSize is the size of the PPAGE window
which is $4000. In the second formula, PPAGEWinAddr is the address
within the PPAGE window where the S-record code/data is to be loaded.
PPAGEWinStart is the beginning address of the PPAGE window which
is $8000.

PPAGE Value S-Record Address
Range Memory Type

$00–$2F $00000–$BFFFF Off-chip memory

$30 $C0000–$C3FFF On-chip FLASH

$31 $C4000–$C7FFF On-chip FLASH

$32 $C8000–$CBFFF On-chip FLASH

$33 $CC000–$CFFFF On-chip FLASH

$34 $D0000–$D3FFF On-chip FLASH

$35 $D4000–$D7FFF On-chip FLASH

$36 $D8000–$DBFFF On-chip FLASH

$37 $DC000–$DFFFF On-chip FLASH

$38 $E0000–$E3FFF On-chip FLASH

$39 $E4000–$E7FFF On-chip FLASH

$3A $E8000–$EBFFF On-chip FLASH

$3B $EC000–$EFFFF On-chip FLASH

$3C $F0000–$F3FFF On-chip FLASH

$3D $F4000–$F7FFF On-chip FLASH

$3E $F8000–$FBFFF On-chip FLASH

$3F $FC000–$FFFFF On-chip FLASH
AN2153

20 MOTOROLA

Application Note
General FLASH Serial Bootloader Requirements
Figure 11. PPAGE Number and Window Address Formulas

Using
the S-Record
Bootloader

The S-record bootloader presented in this application note utilizes the
on-chip SCI for communications with a host computer and does not
require any special programming software on the host.

The bootloader presented in this application note can be used to erase
and reprogram all but the upper 4 K of on-chip FLASH memory. The
bootloader program utilizes the on-chip SCI for communications and
does not require any special programming software on the host
computer. The only host software required is a simple terminal program
that is capable of communicating at 9600 to 115,200 baud and supports
XOn/XOff handshaking.

Invoking the bootloader causes the prompt shown in Figure 12 to be
displayed on the host terminal’s screen. The lowercase ASCII
characters a through c comprise the three valid bootloader commands.
These three lowercase characters were selected, rather than the ASCII
characters 1 through 3, to prevent accidental command execution. If a
problem occurs while programming the FLASH, an error message is
displayed, and the bootloader will redisplay its prompt and wait for a
command entry from the operator. Because the host computer will
continue sending the S-record file, each character of the S-record file
would be interpreted as an operator command entry. Since S-records
contain all of the ASCII numeric characters, it is highly likely that one of
them would be understood as a valid command.

Figure 12. Serial Bootloader Prompt

pageNum = SRecLoadAddr / PPAGEWinSize;

PPAGEWinAddr = (SRecLoadAddr % PPAGEWinSize) + PPAGEWinStart;

MC9S12DP256Bootloader

a) Erase Flash
b) Program Flash
c) Set Baud Rate
?

AN2153

MOTOROLA 21

Application Note
Erase FLASH
Command

Selecting the erase function by typing a lowercase a on the terminal will
cause a bulk erase of all four 64-K FLASH arrays except for the 4-k boot
block in the upper 64-K array where the S-record bootloader resides.
After the erase operation is completed, a verify operation is performed
to ensure that all locations were properly erased. If the erase operation
is successful, the bootloader’s prompt is redisplayed.

If any locations were found to contain a value other than $FF, an error
message is displayed on the screen and the bootloader’s prompt is
redisplayed. If the MC9S12DP256 device will not erase after one or two
attempts, the device may be damaged.

Program FLASH
Command

To increase the efficiency of the programming process, the S-record
bootloader uses interrupt driven, buffered serial I/O in conjunction with
XOn/XOff software handshaking to control the S-record data flow from
the host computer. This allows the bootloader to continue receiving
S-record data from the host computer while the data from the previously
received S-record is programmed into the FLASH.

NOTE: The terminal program must support XOn/XOff handshaking to properly
reprogram the MC9S12DP256’s FLASH memory.

Typing a lowercase b on the terminal causes the bootloader to enter the
programming mode, waiting for S-records to be sent from the host
computer. The bootloader will continue to receive and process S-records
until it receives an S8 or S9 end of file record. If the object file being sent
to the bootloader does not contain an S8 or S9 record, the bootloader
will not return its prompt and will continue to wait for the end of file
record. Pressing the system’s reset switch will cause the bootloader to
return to its prompt.

If a FLASH memory location will not program properly, an error message
is displayed on the terminal screen and the bootloader’s prompt is
redisplayed. If the MC9S12DP256 device will not program after one or
two attempts, the device may be damaged or an S-record with a load
address outside the range of the available on-chip FLASH may have
been received. The S-record data must have load addresses in the
range $C0000–$FFFFF. This address range represents the upper 256
Kbytes of the 1-MB address space of the MC9S12DP256.
AN2153

22 MOTOROLA

Application Note
Bootloader Software
Set Baud Rate
Command

While the default communications rate of the bootloader is 9600 baud,
this speed is much too slow if the majority of the MC9S12DP256’s
FLASH is to be programmed; however, it provides the best compatibility
for initial communications with most terminal programs. The set baud
rate command allows the bootloader communication rate to be set to
one of four standard baud rates. Using a baud rate of 57,600 allows the
entire 256 K of FLASH to be programmed in just under two minutes.

Typing a lowercase c on the terminal causes the prompt shown in
Figure 13 to be displayed on the host terminal’s screen. Entering a
number 1 through 4 on the keyboard will select the associated baud rate
and issue a secondary prompt indicating that the terminal baud rate
should be changed. After changing the terminal baud rate, pressing the
enter or return key will return to the main bootloader prompt. The
selected baud rate will remain set until the target system is reset.

Figure 13. Change Baud Rate Prompt

Bootloader Software

The software implementing the serial FLASH bootloader, shown in Code
Listing, consists of seven basic parts: startup code, bootloader control
loop, programming and erase code, serial communications routines, an
S-record loader and a secondary interrupt vector jump table. The code
is written in a position independent manner so that the generated object
code will execute properly from any address.

1) 9600
2) 38400
3) 57600
4) 115200
? 3
Change Terminal BR, Press Return
AN2153

MOTOROLA 23

Application Note
Startup Code The bootloader startup code implements several setup and initialization
tasks.

The first action performed by the startup code checks the state of pin 6
on port M. If a logic 1 is present, the JMP instruction will continue
execution at the address stored in the reset vector of the secondary
vector table. If a logic 0 is present at pin 6 of port M, execution continues
at the label Boot where the COP watchdog timer is disabled.

After the watchdog timer is disabled, the bootloader copies itself into the
upper 4 K of the on-chip RAM. Execution of the bootloader code from
RAM is necessary so the portion of FLASH block zero not occupied by
the bootloader can be erased and programmed. Notice that only the
code between the labels BootStart and BootLoadEnd is copied into
RAM. This does not include the secondary vector jump table or the
primary interrupt vector addresses since neither is required by the
bootloader. After the copy operation is complete, the RAM is relocated
to overlay the upper 12 K of FLASH memory between $D000 and
$FFFF. Writes to the INITRM register do not go into effect until one bus
clock after the write cycle occurs. This means that the RAM cannot be
accessed at the new address until after this one clock delay. Normally,
the store instruction would simply be followed with a NOP instruction to
ensure that no unintended operations occurred. However, in this case
because the RAM is being moved into the same address space where
the CPU is executing, a CPU free cycle must follow the write cycle.

NOTE: To understand why the store instruction must use extended addressing
and must be aligned to an even byte boundary, it is necessary to
examine the cycle-by-cycle execution detail of the store instruction.

The STAB instruction using extended addressing requires three clock
cycles when executed from internal MCU memory. These three clock
cycles consist of a P cycle, a w cycle and an O cycle (PwO). The P cycle
is a program word access cycle where program information is fetched as
an aligned 16-bit word. The w cycle is the 8-bit data write. Finally, the O

cycle is an optional cycle that is used to adjust instruction alignment in
the instruction queue. An O cycle can be a free cycle (f) or a program
word access cycle (P). When the first byte of an instruction with an odd
number of bytes is misaligned (at an odd address), the O cycle becomes
AN2153

24 MOTOROLA

Application Note
Bootloader Software
a P cycle to maintain queue order. If the first byte is aligned (at an even
address), the O cycle is an f cycle. Consequently, if the first byte of the
STAB instruction using extended addressing is aligned to an even byte
boundary, the O cycle will be an f cycle. This will then provide the cycle
of delay required while the RAM is overlaying the FLASH. Because the
default address of the INITRM register is in the direct page addressing
range, most assemblers will use direct rather than extended addressing.
The greater than character (>) appearing as the first character in the
operand field of the STAB instruction is used to force extended
addressing. Note that some assemblers may not recognize this modifier
character.

The main reason for relocating the RAM, rather than executing the
bootloader at the RAM’s default address, is to allow the SCI0 interrupt
vector to be changed. Because the on-chip RAM has a higher priority in
the memory decoding logic than the on-chip FLASH, overlaying the
FLASH with the on-chip RAM causes the RAM to be accessed rather
than the FLASH. Due to the fact that the bootloader’s communications
routines utilize the SCI in a buffered, interrupt driven mode, the SCI0
interrupt vector must be initialized to point to the bootloader’s SCI
interrupt service routine.

After relocating the on-chip RAM, the startup code initializes the PLL and
engages it as the bus clock. The values for the REFDV and SYNR

registers are calculated by the assembler based on values of the
oscillator frequency (OscClk), final bus frequency (fEclock), and the
desired reference frequency (RefClock). In this case, the final bus
frequency is specified to be 24.0 MHz. Because this is an integer
multiple of the oscillator frequency, the oscillator frequency can be used
as the reference clock for the PLL. This results in a value of zero being
written to the REFDV register. To obtain a bus clock of 24 MHz, the
reference frequency must be multiplied by three. The value written to the
SYNR register multiplies the reference clock by SYNR+1 to generate the
bus clock. Therefore, a value of two is written to the SYNR register to
obtain a 24-MHz bus clock. Note that the four NOP instructions following
the STAB instruction work around a bug in the 0K36N mask set. This
errata manifested itself in the LOCK bit not being cleared until several bus
cycles after a write to the SYNR register had occurred. Also note that a
24-MHz bus clock was chosen to support a baud rate of 115,200.
AN2153

MOTOROLA 25

Application Note
The final actions performed by the startup code initialize the FCLKDIV

register and call the SCIInit subroutine. The value written to the
FCLKDIV register is calculated by the assembler and is based on the
MC9S12DP256’s oscillator frequency, not the bus frequency. The
SCIInit subroutine initializes the SCI0 hardware and associated data
structures needed to support buffered, interrupt driven communications.
It accepts a single parameter in the D accumulator that is used to set the
initial baud rate.

Bootloader
Control Loop

After the startup code has completed its task, a sign-on message is
displayed and the bootloader enters its main control loop. At the start of
the loop, the X index register is loaded with the address of the bootloader
prompt and the subroutine PromptResp is called. The PromptResp

subroutine is used to display a null terminated ($00) character string and
then waits for a single character response from the operator. Upon
receipt of a character, the PromptResp subroutine returns and a range
check is performed on the received character to ensure it is a valid
command. If the received character is not a valid command, the entry is
ignored and the prompt is redisplayed.

If the received character is one of the three valid commands, its ASCII
value is used as an index into a table of offsets. However, before being
used as an offset, the upper four bits of the ASCII value must be
removed. Next, one must be subtracted from the remaining value
because the first entry in the table is at an offset of zero. The result of
the subtraction must then be multiplied by two because each entry in the
table consists of two bytes. Next the LEAX instruction is used in
conjunction with program counter relative (PCR) indexed addressing to
load the address of the command table into the X index register in a
position independent manner. Because the B accumulator contains an
offset to the proper entry in the command table, the LDD instruction uses
B accumulator offset indexed addressing to retrieve the entry from the
table.

Examining the command table at label CmdTable, it can be seen that
the table does not contain the absolute address of the command to
execute. Rather each table entry contains an offset from the beginning
of the table to the start of the command. This offset, when added to the
AN2153

26 MOTOROLA

Application Note
Bootloader Software
base address of the table contained in the X index register, produces the
absolute address of the first instruction of the requested command.
Using offsets in the command table in conjunction with calculating the
beginning of the table in a position independent manner, allows a
computed GOTO to be performed in a position independent manner.
Finally, the JSR instruction uses accumulator offset indexed addressing
to calculate the address of the command and calls the command as a
subroutine.

Upon return from the command, the value of the global variable
ErrorFlag is examined. If it contains a value of zero, the command
completed without any errors. In this case, the code branches back to
the top of the command loop where the bootloader prompt is
redisplayed. If, however, an error occurred during command execution,
the value in ErrorFlag is used as an index into a table of offsets to null
terminated error strings. Calculation of the absolute address of the error
string is performed in much the same manner as the calculation of the
absolute address of the command. After displaying the error message,
the code branches back to the top of the command loop where the
bootloader prompt is redisplayed.

Program
Command Code

The firmware required to implement the FLASH programming command
consists of two subroutines. The first subroutine, ProgFlash, is called
through the command table. This subroutine coordinates the activities
required by the ProgFBlock subroutine which performs the actual
programming of the FLASH memory. The ProgFlash subroutine
begins by calling the GetSRecord subroutine which is used to receive
a single S-record from the host computer. Having received an valid
S-record, the subroutine performs several checks to ensure that the
S-record meets the programming requirements of the MC9S12DP256.
Because the MC9S12DP256’s FLASH may only be programmed an
align word at a time, both the code/data field length and the load address
must be even numbers. If either value is odd, an error code is stored in
the ErrorFlag global variable and the FLASH programming operation
is terminated.
AN2153

MOTOROLA 27

Application Note
Next, the received S-record type is checked. Reception of an S8 or S9
S-record terminates the program FLASH command returning to the
bootloader’s control loop where the prompt is redisplayed. S0 records,
designated as header records, do not contain any program or data and
are simply ignored. Because the linear S-record addresses for the
MC9S12DP256 begin at $C0000 as shown in Figure 10, only S2
S-records may be used to program the on-chip FLASH. Because the
GetSRecord subroutine is capable of receiving S0, S1, S2, S8 and S9
S-records, the program FLASH command is terminated and an error
code is returned in the ErrorFlag global variable if an S1 record is
received.

After checking the received S-record type, a range check is performed
on the S-record load address to ensure it is within the range of the
on-chip FLASH minus the size of the 4 K protected area containing the
bootloader. When performing the range check, the load address is first
checked against SRecLow, the lowest valid S-record address for the
on-chip FLASH. However, when checking against the upper limit,
SRecHi, the number of code/data bytes contained in the S-record must
be added to the load address before the comparison is performed. This
ensures that even though the initial load address is less than the upper
limit, none of the S-record code/data falls outside the upper limit.

Finally, the ProgFlash subroutine uses the S-record load address to
calculate the PPAGE number and PPAGE window address using the
formulas in Figure 11. After initializing the PPAGE register, the PPAGE
value is used to calculate a value for the block select bits. Closely
examining the PPAGE values and the block numbers as shown in
Figure 1, it can be determined that the block number for any of the
PPAGE values corresponds to the one’s complement of bits two and
three of the block’s corresponding PPAGE value. After writing the proper
value to the block select bits in the FCNFG register, the ProgFBlock

subroutine is called to program the received S-record data into the
FLASH. If no errors occurred during the programming operation, the
code branches to the label FSendPace where an ASCII asterisk
character is sent to the host computer to indicate that S-record data was
successfully programmed into the FLASH.
AN2153

28 MOTOROLA

Application Note
Bootloader Software
The ProgFBlock subroutine performs the task of programming the
received S-record data into the on-chip FLASH. While the subroutine
generally follows the flowchart in Figure 9, some operations have been
rearranged to improve the efficiency of the implementation. The first two
steps in the flowchart, writing the PPAGE register and block select bits,
are performed in the ProgFlash subroutine. Note that the order of
these two operations is not important. Because the value for the block
select bits is derived from the PPAGE value, the ProgFlash subroutine
writes the PPAGE register value first.

The third operation in the flowchart checks the state of the CBEIF bit to
ensure that the command buffer is empty and ready to accept a new
command. This check is not made at the beginning of the ProgFBlock
subroutine because the bit is known to be set when the subroutine
completes execution. This condition is inferred by the fact that the CCIF
flag is set before the programmed data from the previously received
S-record is verified.

The ProgFBlock subroutine begins by retrieving the S-record
code/data field length, dividing the value by two and placing the result on
the stack. The code/data field length is divided by two because the
FLASH is programmed a word at a time. Next, the X and Y index
registers are initialized to point to the FLASH and S-record data
respectively. Note that the X index register is loaded with the value in the
PPAGEAddr global variable. This value, calculated using the second
formula in Figure 11, will always point within the PPAGE window. After
initializing the pointers, the programming loop is entered at label
ProgLoop. Note that within the programming loop there are no
instructions that directly correspond to the five bus cycle delay before
checking the state of the CBEIF flag after issuing the program
command. Instead, the five bus cycle delay is inherent in the three
instructions (LDAB, BITB, BNE) used to check the state of the ACCERR

and PVIOL status bits. This loop follows the remainder of the flowchart
in Figure 9, issuing a new programming command each time the CBEIF
flag is set until all of the count in the local variable NumWords is zero.

Before verifying that all of the FLASH locations programmed properly,
the firmware must wait until the CCIF flag is set, indicating that all issued
programming commands have completed. Failure to observe this
AN2153

MOTOROLA 29

Application Note
constraint before performing a read operation on the FLASH will result
in the setting of the ACCERR bit and any pending programming
commands will be terminated. The verification process begins by
reinitializing the DataBytes local variable and the X and Y index
register pointers. If any of the programmed words do not match the
S-record data, a “not equal” condition (Z bit in the CCR equal to 0) is
returned.

Erase Command
Code

The code comprising the FLASH erase command is not nearly as simple
as the programming code; it consists of five subroutines. The reason for
the additional complexity surrounds the method that must be used to
erase a FLASH block containing protected areas. When a 64-K block
has a portion of its contents protected from being erased or
programmed, the FLASH’s mass erase command cannot be used.
Instead, the unprotected areas must be erased one 512-byte sector at a
time. Because the time required to erase a sector is 20 ms versus
100 ms for the mass erase operation, erasure of a 64-K block with
protected areas requires much longer. In this case where the bootloader
resides in a 4-K protected area of block zero, 120 sector erase
operations must be performed. Not counting the time required to verify
each sector erasure, the sector erase operations require 2.4 seconds
(20 ms * 120 sectors).

The FLASH erase command begins with the subroutine EraseFlash,
called through the command table. This subroutine coordinates the
activities of the other four subroutines. It begins by performing a mass
erase and verify on three of the 64-K FLASH blocks. After all three of the
64-K FLASH blocks have been successfully erased, the EraseBlk0

subroutine is called to perform a sector by sector erase of the
unprotected portion of FLASH block zero.

The EraseBlk0 subroutine begins by allocating and initializing the local
variable PPAGECnt. The initialized value of three is the number of 16-K
PPAGE windows that will be completely erased a sector at a time. The
PPAGE register is initialized with a value passed in the B accumulator
from the EraseFlash subroutine. This value, $3C, places the lower
16 K of FLASH block zero into the PPAGE window. The block select bits
are initialized to zero. After loading the X index register with the address
AN2153

30 MOTOROLA

Application Note
Bootloader Software
of the start of the PPAGE window and the B accumulator with the
number of sectors to erase, the EraseSectors subroutine is called. In
addition to erasing the requested number of sectors, the VerfSector

subroutine is called to verify the erasure. Note that the VerfSector

subroutine verifies the erasure a word at a time because the erase verify
command built into the FLASH state machine will only operate on a
64-K block. After EraseBlk0 performs the erasure of the lower 48 K of
FLASH block zero, the lower 24 sectors ($8000–$EFFF) of the upper
16 K of block zero are erased.

Set Baud Rate
Command Code

The code comprising the set baud rate command is relatively simple.
The subroutine begins by displaying the baud rate change prompt and
then waiting for the operator to enter a baud rate selection. A range
check is performed on the entered character; if an invalid character is
entered, the prompt is redisplayed. If the selection is valid, the upper four
bits are masked off, one is subtracted from the lower four bits, and the
result is divided by two. The result is used as an index into the
BaudTable to retrieve the proper SCI0BD register value for the
selected baud rate.

Before switching to the newly selected baud rate, a message is
displayed prompting the operator to change the host terminal’s baud
rate. However, before the SCI0BD register is written with the new value,
the firmware must wait until the last character of the message is shifted
from the SCI0 transmit shift register. Once the last character of the
message is sent, the SCI0BD register is written with the new value and
the getchar subroutine is called to wait for an indication from the
operator that the host terminal baud rate has been changed. Finally, a
carriage return/line feed is sent to the terminal before returning to the
bootloader control loop.

S-Record Loader
Code

The GetSRecord subroutine is used to receive a single S-record from
the host computer. GetSRecord begins by allocating space on the
stack for two local variables and initializing the X index register. The
SRecBytes variable is used to hold the converted value of the S-record
length field. This value includes the number of bytes contained in the
load address field, the length of the code/data field, and the length of the
AN2153

MOTOROLA 31

Application Note
checksum field. The variable CheckSum is used to contain the
calculated checksum value as the S-record is received. The X index
register is initialized to point to the beginning of the 24-bit global variable,
LoadAddr, where the received S-record’s address is stored. Note also
that the most significant byte of LoadAddr is cleared in case an S1
record is received.

After the initializations, a search is begun for the character pairs S0, S1,
S2, S8, or S9 which indicate the start of a valid S-record. Once a valid
start of record is found, the number of bytes in the load address plus one
is stored in the global variable DataBytes. This value is subsequently
subtracted from the received S-record length byte to produce a result
representing the code/data field length. Before receiving the S-record
length byte, the second character of the start of record pair is stored in
the global RecType. After receiving the S-record length byte, the value
is saved in the local variable SRecBytes. This value is also used to
initialize CheckSum which is used to calculate a checksum value as the
S-record is received.

The loop beginning at the label RcvData receives the remainder of the
S-record including the load address, the code/data field, and the
checksum. Note that because each received byte is stored in successive
memory locations, the global variables LoadAddr and SRecData must
remain in the order they are declared. As each data byte and the
checksum is received, it is added into the calculated checksum value.
Because the received checksum is actually the one’s complement of
what the calculated checksum should be, adding the two values should
produce a result of $FF. incrementing the CheckSum variable at the end
of the receive loop should produce a result of zero if the checksum and
all the S-record fields were received properly. This results in an “equal”
condition (CCR Z = 1) being returned if the S-record was properly
received and a “not equal” condition (CCR Z = 0) being returned if a
problem occurred receiving the S-record.

Operation of the GetSRecord subroutine is supported by the three
additional subroutines GetHexByte, IsHex, and CvtHex. The
GetHexByte subroutine retrieves two ASCII hex bytes from the serial
port and converts them into a single 8-bit data byte that is returned in the
B accumulator. The IsHex subroutine is used to check received byte to
AN2153

32 MOTOROLA

Application Note
Bootloader Software
ensure that it is an ASCII hexadecimal character. If the character in the
B accumulator is a non-hexadecimal character, the subroutine returns a
“not equal” condition (CCR Z = 0). Otherwise, an “equal” condition
(CCR Z = 1) is returned. The CvtHex subroutine converts the ASCII
hexadecimal character in the B accumulator to a binary value. The result
remains in the B accumulator.

Serial
Communications
Code

The serial communications routines utilize SCI0 to communicate with a
host computer. The routines utilize the SCI in an interrupt driven mode,
allowing reception of data from the host computer while the bootloader
is programming the on-chip FLASH memory. To prevent the possibility
of the receive buffer overflowing, the receive routines support XOn/XOff
handshaking with the host computer. Because the bootloader does not
send large amounts of data to the host computer, XOn/XOff
handshaking is not supported by the transmit routines.

To utilize the interrupt driven mode effectively, a circular buffer or queue
must be associated with both the transmitter and receiver. The queue
acts as an elastic buffer providing a software interface between the
received character stream and the MC9S12DP256. In addition to the
storage required by the transmit and receive queues, several other
pieces of data are required for queue management. The information
necessary to manage the queue consists of a way to determine the next
available storage location in each queue, the next available location or
piece of data in the queue, and a way to determine if a queue is full or
empty. Rather than utilize 16-bit pointers to manage the queues, the
communications routines employ four 1-byte variables. RxIn, RxOut,
TxIn, and TxOut are used in conjunction with 8-bit accumulator offset
indexed addressing to access data in the transmit and receive queues.
In addition, two 1-byte variables, RxBAvail and TxBAvail, are used to
keep track of the number of bytes available in each queue. When the
value in each of these variables is equal to the size of the queue, the
buffer is empty. When the value is zero, the queue is full. Using a byte
for the index does not allow support of queue sizes greater than 255
bytes. However, this should not pose severe restrictions for most
applications.
AN2153

MOTOROLA 33

Application Note
The proper queue size for an application will depend on the expected
length of messages transmitted and received. If the selected transmit
queue size is too small, the routines essentially will behave the same as
the polled SCI example. Once the queue fills, the CPU12 will have to
wait until a character is transmitted before the next character can be
placed in the queue. If the receive queue is too small, there will be a risk
that received characters will be lost if the queue becomes full and
CPU12 does not remove some of the data before the next piece of data
arrives. Conversely, picking queue sizes larger than necessary does not
have a detrimental effect on program performance or loss of data.
However, it will consume the valuable on-chip memory unnecessarily. If
uncertain on the exact queue size for a particular application, it is best to
make it larger than necessary. As shown, the transmit and receive
queues do not have to be the same size, and their sizes are not required
to be an even power of two.

The XOffCount and XOnCount constants are used to manage how full
and how empty, respectively, the receive queue is allowed to get before
the XOff and XOn control characters are sent to the host computer. The
value for XOffCount should be chosen based on the number of bytes
that are expected to be sent from the host after a request has been made
for the TxIRQ routine to send an XOff to the host. This value, which
represents the number of remaining bytes in the receive queue when an
XOff should be sent, will depend on the UART characteristics of the host
computer. In this case, a value of XOffCount would allow up to 10
additional characters to be sent after a request to send the XOff had
been posted. This would allow for the host computer UART with an
8-byte FIFO plus the possible 2-character delay in sending the XOFF
character if the transmit shift register and the transmit data register were
both full.

The value for XOnCount should be selected such that the queue will
never become empty as long as the host has data to send. Setting the
correct value for this constant requires analysis of the rate at which data
is removed from the queue by the application and the delay before the
host computer begins sending data after receiving an XOn. Because the
host’s characteristics can vary widely, a value of the receive buffer minus
eight was arbitrarily chosen. Note that the value of XOnCount
represents the number of characters available in the receive queue.
AN2153

34 MOTOROLA

Application Note
Bootloader Software
The SCIInit subroutine is used to initialize the SCI hardware and the
related queue data structures. The baud rate register (SCI0BD) value for
the desired baud rate is passed to the subroutine in the D accumulator.
The queue index values RxIn, RxOut, TxIn, TxOut, and the values for
RxBAvail and TxBAvail are not specifically initialized by the
subroutine because the initial values are set at the point of their
declaration. This technique works in this case because the constant
values were copied from the FLASH into RAM. In a situation where the
variables were declared with a ds (define storage) directive each
variable would have to be initialized to its proper value.

When the transmitter and receiver are enabled, notice that only the
receive interrupts are enabled. Unlike the receiver interrupts, which may
be enabled at all times, the transmit interrupt may be enabled only when
the transmit queue contains characters to be sent. Enabling transmit
interrupts at initialization would immediately cause a transmitter interrupt
even though the transmit queue is empty. This is because the TDRE bit
is set whenever the SCI transmitter is in an idle state. The final action
performed by the SCIInit subroutine initializes the SCI0 interrupt
vector to point to the SCI interrupt routine, SCIISR.

Because each SCI only has a single interrupt vector shared by the
transmitter and receiver, a short dispatch routine determines the source
of the interrupt and calls either the RxIRQ or TxIRQ. Note that it is not
an arbitrary choice to have the dispatch routine check for receiver
interrupts before transmitter interrupts. To avoid the loss of received
data, an SCI interrupt dispatch routine should always check the receiver
control and status flags before checking those associated with the
transmitter. Failure to follow this convention will most likely result in
receiver overruns when data is received during message transmissions
longer than a couple of bytes.

The receive interrupt service routine, RxIRQ, has the responsibility of
removing a received byte from the receive data register and placing it in
the receive data queue if space is available. In addition, if space
available in the queue falls below the value of XOffCount, two
variables, SendXOff and XOffSent, are set to a non-zero value and
transmitter interrupts are enabled. These actions cause an XOff
character to be sent to the host computer the next time a transmit
AN2153

MOTOROLA 35

Application Note
interrupt is generated. XOffSent is used by the receive interrupt service
routine to ensure that only a single XOff character is sent to the host after
the space available in the queue falls below the value of XOffCount.
XOffSent is also used by the getchar subroutine to determine if an
XOn should be sent after each character is removed from the queue.
Finally, notice that if the queue becomes full, the received byte is simply
discarded.

The transmit interrupt service routine, TxIRQ, has the responsibility of
removing a byte from the transmit data queue and sending it to the host
computer. Before sending a character from the transmit queue,
SendXOff is checked. If it contains a non-zero value, an XOff character
is immediately sent to the host. Sending the XOff character before
sending data that may be in the transmit queue ensures data flow from
the host is stopped before the receive queue overflows. Notice that if the
queue becomes empty after a character is transmitted, transmitter
interrupts are disabled.

The last two major routines rounding out the serial communication code
are the getchar and putchar subroutines. The getchar subroutine’s
main function is to retrieve a single character from the receive queue and
return it to the calling routine in the B accumulator. Notice that if the
receive queue is empty, the getchar subroutine will wait until a
character is received from the host. Because this action may not be
desirable for some applications, a utility subroutine, SCIGetBuf, can be
called to determine if any data is in the receive queue. This small
subroutine returns, in the B accumulator, a count of the number of data
bytes in the receive queue. In addition to managing the receive queue
variables each time a character is removed from the queue, the
getchar subroutine checks the state of XOffSent and the number of
characters left in the receive queue to determine if an XOn character
should be sent to the host computer. If an XOff character was previously
sent and the number of characters left in the receive queue is less than
XOnCount, an XOn character is sent to the host by calling the putchar
routine.
AN2153

36 MOTOROLA

Application Note
Secondary Interrupt Vector Jump Table
The putchar subroutine’s main function is to place a single character,
passed in the B accumulator, into the transmit queue. Once the
character is in the queue and the queue variables have been updated,
the transmit interrupt enable (TIE) bit is set. If transmitter interrupts were
not previously enabled and the transmit data register empty (TDRE) bit
is set, setting the TIE bit will cause an SCI interrupt to occur immediately.

Secondary Interrupt Vector Jump Table

Because the reset and interrupt vectors reside in the protected
bootblock, a secondary vector table is located just below the protected
bootblock area. Each entry in the secondary interrupt table should
consist of a 2-byte address mirroring the primary interrupt and reset
vector table. The secondary interrupt and reset vector table is utilized by
having each vector point to a single JMP instruction that uses the
CPU12’s indexed-indirect program counter relative addressing mode.
This form of the JMP instruction uses four bytes of memory and requires
just six CPU clock cycles to execute. The table in Figure 14 associates
each vector source with the secondary interrupt table address.
AN2153

MOTOROLA 37

Application Note
Figure 14. Secondary Vector Table Addresses for a 4-K Bootblock

Interrupt Source
Secondary

Vector
Address

Interrupt Source
Secondary

Vector
Address

Reserved $FF80 $EF80 I2C bus $EFC0

Reserved $FF82 $EF82 DLC $EFC2

Reserved $FF84 $EF84 SCME $EFC4

Reserved $FF86 $EF86 CRG lock $EFC6

Reserved $FF88 $EF88 Pulse accumulator B overflow $EFC8

Reserved $FF8A $EF8A Modulus down counter underflow $EFCA

PWM emergency shutdown $EF8C Port H interrupt $EFCC

Port P interrupt $EF8E Port J interrupt $EFCE

MSCAN 4 transmit $EF90 ATD1 $EFD0

MSCAN 4 receive $EF92 ATD0 $EFD2

MSCAN 4 errors $EF94 SCII $EFD4

MSCAN 4 wakeup $EF96 SCI0 $EFD6

MSCAN 3 transmit $EF98 SPI0 $EFD8

MSCAN 3 receive $EF9A Pulse accumulator A input edge $EFDA

MSCAN 3 errors $EF9C Pulse accumulator A overflow $EFDC

MSCAN 3 wakeup $EF9E Timer overflow $EFDE

MSCAN 2 transmit $EFA0 Timer channel 7 $EFE0

MSCAN 2 receive $EFA2 Timer channel 6 $EFE2

MSCAN 2 errors $EFA4 Timer channel 5 $EFE4

MSCAN 2 wakeup $EFA6 Timer channel 4 $EFE6

MSCAN 1 transmit $EFA8 Timer channel 3 $EFE8

MSCAN 1 receive $EFAA Timer channel 2 $EFEA

MSCAN 1 errors $EFAC Timer channel 1 $EFEC

MSCAN 1 wakeup $EFAE Timer channel 0 $EFEE

MSCAN 0 transmit $EFB0 Real-time interrupt $EFF0

MSCAN 0 receive $EFB2 IRQ $EFF2

MSCAN 0 errors $EFB4 XIRQ $EFF4

MSCAN 0 wakeup $EFB6 SWI $EFF6

FLASH $EFB8 Unimplemented instruction trap $EFF8

EEPROM $EFBA COP failure reset $EFFA

SPI2 $EFBC Clock monitor fail reset $EFFC

SPI1 $EFBE Reset $EFFE
AN2153

38 MOTOROLA

A
N

215

M
O

T
O

R
O

LA
39

A
pplication N

ote
C

ode Listing
Code Listing

.
LL).
e PLL.
er.
r.

ster.

ster.

5,200 baud.
,600 baud.
,400 baud.
600 baud.

 window.
size.

s moved.
 the bootloader

$8000 - $BFFF).

ss accepted

ess + 1
.

3

00000000 RegBase: equ $0000
 ;
 opt lis
 ;
M offset: macro
M PCSave: set *
M org $:0
M endm
 ;
M switch: macro
M ifc '.text',':0'
M org PCSave
M endif
M endm
 ;
007A1200 OscClk: equ 8000000 ; oscillator clock frequency
016E3600 fEclock: equ 24000000 ; final E-clock frequency (P
007A1200 RefClock: equ 8000000 ; reference clock used by th
00000000 REFDVVal: equ (OscClk/RefClock)-1 ; value for the REFDV regist
00000002 SYNRVal: equ (fEclock/RefClock)-1 ; value for the SYNR registe
00000000 if OscClk>12800000
 FCLKDIVVal: equ (OscClk/200000/8)+FDIV8 ; value for the FCLKDIV regi
 else
00000028 FCLKDIVVal: equ (OscClk/200000) ; value for the FCLKDIV regi
 endif
 ;
0000000D Baud115200: equ fEclock/16/115200 ; baud register value for 11
0000001A Baud57600: equ fEclock/16/57600 ; baud register value for 57
00000027 Baud38400: equ fEclock/16/38400 ; baud register value for 38
0000009C Baud9600: equ fEclock/16/9600 ; baud register value for 9,
 ;
00008000 FlashStart: equ $8000 ; start address of the flash
00001000 BootBlkSize: equ 4096 ; Erase protected bootblock
00001000 RAMStart: equ $1000 ; default RAM base address.
0000FF80 StackTop: equ $ff80 ; stack location after RAM i
00003000 RAMBoot: equ $3000 ; starting RAM address where
 ; will be copied.
00000200 SectorSize: equ 512 ; size of a Flash Sector.
00004000 PPAGESize: equ 16384 ; size of the PPAGE window (
 ;
000C0000 SRecLow: equ $c0000 ; lowest S-Record load addre
 ; by the bootloader.
000FF000 SRecHi: equ $ff000 ; highest S-Record load addr
 ; accepted by the bootloader
 ;

A
p

p
licatio

n
 N

o
te

40
M

O
T

O
R

O
LA

00000030 S0RecType: equ '0'
00000031 S1RecType: equ '1'
00000032 S2RecType: equ '2'

d an odd number

inted to by the

er
Flash bootloader in Flash.
hip RAM.
bootloader code.

der into RAM.
done.

er to overlay the Flash

e boundary?

extended addressing an be
undary.

nitial silicon.
A
N

2153

00000038 S8RecType: equ '8'
00000039 S9RecType: equ '9'
 ;
00000001 FEraseError: equ 1 ; Flash failed to erase.
00000002 SRecRngErr: equ 2 ; S-Record out of range.
00000003 FlashPrgErr: equ 3 ; Flash programming error.
00000004 SRecDataErr: equ 4 ; Received S-Record containe
 ; of data bytes.
00000005 SRecAddrErr: equ 5 ; S-Record Address is odd.
00000006 SRecLenErr: equ 6 ; S-Record is too long.
 ;

;***
 ;
 ;
0000F000 org $f000
 ;
 ;
0000F000 1F02514004 BootStart: brclr PTIM,#$40,Boot ; execute the bootloader?
0000F005 05FBFFF5 jmp [Reset-BootBlkSize,pcr] ; no. jump to the program po
 ; secondary reset vector.
 ;
0000F009 79003C Boot: clr COPCTL ; keep watchdog disabled.
 ;
0000F00C CFFF80 BootCopy: lds #StackTop ; initialize the stack point
0000F00F CEF000 ldx #BootStart ; point to the start of the
0000F012 CD3000 ldy #RAMBoot ; point to the start of on-c
0000F015 CCF59A ldd #BootLoadEnd ; calculate the size of the
0000F018 83F000 subd #BootStart
0000F01B 180A3070 MoveMore: movb 1,x+,1,y+ ; move a byte of the bootloa
0000F01F 0434F9 dbne d,MoveMore ; dec byte count, move till
 ;
0000F022 C6C1 ldab #$c0+RAMHAL ; write to the INITRM regist
 ; bootblock with RAM.
 ;
00000000 if *&$0001<>0 ; PC currently at an odd byt
 endif
 ;
0000F024 7B0010 stab >INITRM ; this instruction MUST use
 ; aligned to an even byte bo
 ;
0000F027 C600 ldab #REFDVVal ; set the REFDV register.
0000F029 5B35 stab REFDV
0000F02B C602 ldab #SYNRVal ; set the SYNR register.
0000F02D 5B34 stab SYNR
0000F02F A7 nop ; nops required for bug in i
0000F030 A7 nop
0000F031 A7 nop

A
N

215

M
O

T
O

R
O

LA
41

A
pplication N

ote
C

ode Listing
0000F032 A7 nop
0000F033 4F3708FC brclr CRGFLG,#LOCK,* ; wait here till the PLL is locked.
0000F037 4C3980 bset CLKSEL,#PLLSEL ; switch the bus clock to the PLL.

divider register.

message

g.

t a 1 character response.
n 'a'?
rompt.

rompt.
ble.
to the command offset table.
e entry is a 2 byte address.
.
ing of the table to the cmd.

d?
 wait for entered command.
number for indexing.
ess in the table is 2 bytes.
ble.
of the table to the string.
ror string from the table.
terminal.

l.

ter.

3

 ;
0000F03A C628 ldab #FCLKDIVVal ; value for the Flash clock
0000F03C 7B0100 stab FCLKDIV
 ;
0000F03F CC009C ldd #Baud9600 ; set SCI to 9600 baud.
0000F042 15FA046F jsr SCIInit,pcr ; go initialize the SCI.
0000F046 10EF cli
 ;
0000F048 1AFA0055 leax SignOn,pcr ; get the bootloader signon
0000F04C 15FA0422 jsr OutStr,pcr ; send it to the terminal.
0000F050 69FA0546 CmdLoop: clr ErrorFlag,pcr ; clear the global error fla
0000F054 1AFA0064 leax BLPrompt,pcr ; get the bootloader prompt
0000F058 072A bsr PromptResp ; go display the prompt & ge
0000F05A C161 cmpb #$61 ; do a range check. less tha
0000F05C 25F2 blo CmdLoop ; yes. just re-display the p
0000F05E C163 cmpb #$63 ; greater than 'c'?
0000F060 22EE bhi CmdLoop ; yes. just re-display the p
0000F062 C40F andb #$0f ; no. mask off the upper nyb
0000F064 53 decb ; reduce by 1 for indexing in
0000F065 58 lslb ; mult by 2 as each cmd tabl
0000F066 1AFA0031 leax CmdTable,pcr ; point to the command table
0000F06A ECE5 ldd b,x ; get offset from the beginn
0000F06C 15E6 jsr d,x ; execute the command.
0000F06E E6FA0528 ldab ErrorFlag,pcr ; error executing the comman
0000F072 27DC beq CmdLoop ; no. go display the prompt,
0000F074 53 decb ; subtract 1 from the error
0000F075 58 lslb ; mult by 2 because each addr
0000F076 1AFA00CC leax ErrorTable,pcr ; yes. point to the error ta
0000F07A ECE5 ldd b,x ; get offset from the start
0000F07C 1AE6 leax d,x ; calc the address of the er
0000F07E 15FA03F0 jsr OutStr,pcr ; send error message to the
0000F082 20CC bra CmdLoop ; go display the prompt.
 ;

;***
 ;
0000F084 15FA03EA PromptResp: jsr OutStr,pcr ; send prompt to the termina
0000F088 15FA04B8 jsr getchar,pcr ; go get the user's choice.
0000F08C 15FA04E9 jsr putchar,pcr ; echo it.
0000F090 37 pshb ; save it.
0000F091 1AFA0060 leax CrLfStr,pcr ; go to the next line.
0000F095 15FA03D9 jsr OutStr,pcr
0000F099 33 pulb ; restore the entered charac
0000F09A 3D rts
 ;

;***
 ;

A
p

p
licatio

n
 N

o
te

42
M

O
T

O
R

O
LA

0000F09B 0288 CmdTable: dc.w EraseFlash-CmdTable ; cmd table entry for 'Erase Flash' command.
0000F09D 01A7 dc.w ProgFlash-CmdTable ; cmd table entry for 'Program Flash' command.
0000F09F 0169 dc.w SetBaud-CmdTable ; cmd table entry for 'Set Baud Rate' command.

rompt
t a 1 character response.
n '1'?
rompt.

rompt.
ble.
ing.
 table entry is 2 bytes.
table.
the table.
A
N

2153

 ;
0000F0A1 0D0A4D433953 SignOn: dc.b $0d,$0a,"MC9S12DP256 Bootloader",$0d,$0a,0
 ;
0000F0BC 0D0A61292045 BLPrompt: dc.b $0d,$0a,"a) Erase Flash",$0d,$0a
0000F0CE 62292050726F dc.b "b) Program Flash",$0d,$0a
0000F0E0 632920536574 dc.b "c) Set Baud Rate",$0d,$0a
0000F0F2 3F2000 dc.b "? ",0
 ;
0000F0F5 0D0A00 CrLfStr: dc.b $0d,$0a,0
 ;
0000F0F8 0D0A31292039 BaudPrompt: dc.b $0d,$0a,"1) 9600",$0d,$0a
0000F103 322920333834 dc.b "2) 38400",$0d,$0a
0000F10D 332920353736 dc.b "3) 57600",$0d,$0a
0000F117 342920313135 dc.b "4) 115200",$0d,$0a
0000F122 3F2000 dc.b "? ",0
 ;
0000F125 4368616E6765 BaudChgPrompt: dc.b "Change Terminal BR, Press Return",0
 ;
0000F146 000C ErrorTable: dc.w FNotErasedStr-ErrorTable
0000F148 0021 dc.w SRecRngStr-ErrorTable
0000F14A 003B dc.w FlashPrgErrStr-ErrorTable
0000F14C 0057 dc.w SRecDataErrStr-ErrorTable
0000F14E 007C dc.w SRecAddrErrStr-ErrorTable
0000F150 0098 dc.w SRecLenErrStr-ErrorTable
 ;
0000F152 0D0A466C6173 FNotErasedStr: dc.b $0d,$0a,"Flash Not Erased",$0d,$0a,0
0000F167 0D0A532D5265 SRecRngStr: dc.b $0d,$0a,"S-Record out of Range",$0d,$0a,0
0000F181 0D0A466C6173 FlashPrgErrStr: dc.b $0d,$0a,"Flash Programming Error",$0d,$0a,0
0000F19D 0D0A532D5265 SRecDataErrStr: dc.b $0d,$0a,"S-Record code/data length is odd",$0d,$0a,0
0000F1C2 0D0A532D5265 SRecAddrErrStr: dc.b $0d,$0a,"S-Record Address is odd",$0d,$0a,0
0000F1DE 0D0A532D5265 SRecLenErrStr: dc.b $0d,$0a,"S-Record Code/Data Field Too Long",$0d,$0a,0
 ;

;***
 ;
0000F204 SetBaud: equ *
0000F204 1AFAFEF0 leax BaudPrompt,pcr ; get the baud rate change p
0000F208 15FAFE78 jsr PromptResp,pcr ; go display the prompt & ge
0000F20C C131 cmpb #$31 ; do a range check. less tha
0000F20E 25F4 blo SetBaud ; yes. just re-display the p
0000F210 C134 cmpb #$34 ; greater than '4'?
0000F212 22F0 bhi SetBaud ; yes. just re-display the p
0000F214 C40F andb #$0f ; no. mask off the upper nyb
0000F216 53 decb ; subtract 1 for table index
0000F217 58 lslb ; multiply by 2 because each
0000F218 1AFA001E leax BaudTable,pcr ; point to the start of the
0000F21C ECE5 ldd b,x ; get the SCI0BD value from
0000F21E 3B pshd ; save the value.

A
N

215

M
O

T
O

R
O

LA
43

A
pplication N

ote
C

ode Listing
0000F21F 1AF903 leax BaudChgPrompt,pcr ; prompt the user to change the terminal baud rate.
0000F222 15FA024C jsr OutStr,pcr ; send it to the terminal.
0000F226 4FCC40FC brclr SCI0SR1,#TC,* ; wait until the last character is sent until we change

rom the stack.

ange the baud rate.

.
d.
d.
ud.

ERR bit is set from a
so we can program the Flash.
aracter the first time.
progress character.
ocessed an S-Record.

here was an error
length even?

address even?

 S9 records.
ad addresses $C0000 - $FEFFF

byte of the 24-bit address.
3

 ; the baud rate.
0000F22A 3A puld ; restore the SCI0BD value f
0000F22B 5CC8 std SCI0BD ; change the baud rate.
0000F22D 15FA0313 jsr getchar,pcr ; go wait for the user to ch
0000F231 1AFAFEC0 leax CrLfStr,pcr ; go to the next line.
0000F235 15FA0239 jsr OutStr,pcr
0000F239 3D rts ; return.
 ;
0000F23A 009C BaudTable: dc.w Baud9600 ; SCI0BD value for 9600 baud
0000F23C 0027 dc.w Baud38400 ; SCI0BD value for 38400 bau
0000F23E 001A dc.w Baud57600 ; SCI0BD value for 57600 bau
0000F240 000D dc.w Baud115200 ; SCI0BD value for 115200 ba
 ;

;***
 ;
0000F242 ProgFlash: equ *
0000F242 C630 ldab #PVIOL+ACCERR ; if either the PVIOL or ACC
0000F244 7B0105 stab FSTAT ; previous error, reset them
0000F247 2006 bra FSkipFirst ; don't send the progress ch
0000F249 C62A FSendPace: ldab #'*' ; the ascii asterisk is the
0000F24B 15FA032A jsr putchar,pcr ; let the user know we've pr
0000F24F 15FA0174 FSkipFirst: jsr GetSRecord,pcr ; go get an S-Record.
0000F253 267D bne ProgDone ; non-zero condition means t
0000F255 0FFA03410104 brclr DataBytes,pcr,#$01,DataLOK ; is the received S-Record
0000F25B 8604 ldaa #SRecDataErr ; no. report the error.
0000F25D 2073 bra ProgDone ; stop programming.
0000F25F 0FFA033C0104 DataLOK: brclr LoadAddr+2,pcr,#$01,SRecOK ; is the received S-Record
0000F265 8605 ldaa #SRecAddrErr ; no. report the error.
0000F267 2069 bra ProgDone ; stop programming.
 ;
0000F269 E6FA032E SRecOK: ldab RecType,pcr ; check the record type.
0000F26D C131 cmpb #S1RecType ; S1 record received?
0000F26F 2604 bne ChckNext ; no. check for S0, S2, S8 &
0000F271 8602 ldaa #SRecRngErr ; yes. only S2 records w/ lo
 ; allowed.
0000F273 205D bra ProgDone ; save error & return.
 ;
0000F275 C139 ChckNext: cmpb #S9RecType ; was it an S9 record?
0000F277 275D beq ProgRtn ; yes. we're done.
0000F279 C138 cmpb #S8RecType ; was it an S8 record?
0000F27B 2759 beq ProgRtn ; yes. we're done.
0000F27D C130 cmpb #S0RecType ; no. was it an S0 record?
0000F27F 27C8 beq FSendPace ; yes. just ignore it.
 ;
0000F281 E6FA031A ldab LoadAddr,pcr ; was an S2 record. Get high
0000F285 C10C cmpb #SRecLow>>16 ; less than $c0000?
0000F287 2404 bhs ChkHiLimit ; no. check the upper limit.

A
p

p
licatio

n
 N

o
te

44
M

O
T

O
R

O
LA

0000F289 8602 BadSRecRng: ldaa #SRecRngErr ; yes. S-Record out of range.
0000F28B 2045 bra ProgDone ; save the error code & return.
 ;

 the S-Record.

f the 24-bit address.

e 24-bit address.
 lower 16-bits.

its. Out of range?
.

 load address.
he 32-bit divide
4-bit load address.
 the PPAGE window size.

 address to the remainder
ow load address).
is the PPAGE value.

 block select bits based
egister value.

 2 bits.

ess.
lash.
ent ok.

an access it.
return a non-zero condition.

A
N

2153

0000F28D E6FA030B ChkHiLimit: ldab DataBytes,pcr ; get the number of bytes in
0000F291 87 clra ; zero extend it.
0000F292 E3FA030A addd LoadAddr+1,pcr ; add in the lower 16-bits o
0000F296 B745 tfr d,x ; save rthe result in X.
0000F298 E6FA0303 ldab LoadAddr,pcr ; get the upper 8-bits of th
0000F29C C900 adcb #$00 ; add in possible carry from
0000F29E C10F cmpb #SRecHi>>16 ; greater than $0fxxxx?
0000F2A0 2505 blo AddrOK ; no. S-Record within range.
0000F2A2 8EF000 cpx #SRecHi&$ffff ; yes. check the lower 16- b
0000F2A5 22E2 bhi BadSRecRng ; yes. S-Record out of range
 ;
0000F2A7 E6FA02F4 AddrOK: ldab LoadAddr,pcr ; get upper 8-bits of 24-bit
0000F2AB B796 exg b,y ; zero extend b into y for t
0000F2AD ECFA02EF ldd LoadAddr+1,pcr ; get the lower 16-bits of 2
0000F2B1 CE4000 ldx #PPAGESize ; divide the load address by
0000F2B4 11 ediv
0000F2B5 C38000 addd #FlashStart ; add the PPAGE window start
 ; (this gives the PPAGE wind
0000F2B8 B7C6 exg d,y ; lower byte of the quotent
0000F2BA 5B30 stab PPAGE
0000F2BC 54 lsrb ; calculate the value of the
0000F2BD 54 lsrb ; on bits 3:2 of the PPAGE r
0000F2BE 51 comb
0000F2BF C403 andb #$03 ; mask off all but the lower
0000F2C1 7B0103 stab FCNFG ; select the block to erase.
0000F2C4 6DFA02D5 sty PPAGEWAddr,pcr ; save the PPAGE window addr
0000F2C8 15FA000B jsr ProgFBlock,pcr ; go program the data into F
0000F2CC 1827FF79 lbeq FSendPace ; zero condition means all w
0000F2D0 8603 ldaa #FlashPrgErr
0000F2D2 6AFA02C4 ProgDone: staa ErrorFlag,pcr ; put error code where pod c
0000F2D6 3D ProgRtn: rts ; if we fall through, we automatically
 ;

;***
 ;
0000F2D7 offset 0
0000F2D7 PCSave: set *
00000000 org $0
 ;
00000000 NumWords: ds 1
00000001 LocalSize: set *
 ;
00000001 switch .text
00000001 ifc '.text','.text'
0000F2D7 org PCSave
 endif
 ;
0000F2D7 E6FA02C1 ProgFBlock: ldab DataBytes,pcr ; get the block size.

A
N

215

M
O

T
O

R
O

LA
45

A
pplication N

ote
C

ode Listing
0000F2DB 54 lsrb ; divide the byte count by 2 since we program a word
 ; at a time.
0000F2DC 37 pshb ; allocate the local.

 address.
cord data.
.
nto the Flash

gister.
ng a 1 to CBEIF.

a problem executing

ERR bit is set,

 buffer is empty.

s complete.

 since we verify a

 address.
cord data.
.

 condition).
rds?

ase.
3

0000F2DD EEFA02BC ldx PPAGEWAddr,pcr ; get the PPAGE window Flash
0000F2E1 19FA02BD leay SRecData,pcr ; point to the received S-Re
0000F2E5 EC71 ProgLoop: ldd 2,y+ ; get a word from the buffer
0000F2E7 6C31 std 2,x+ ; latch the address & data i
 ; program/erase buffers.
0000F2E9 C620 ldab #PROG ; get the program command.
0000F2EB 7B0106 stab FCMD ; write it to the command re
0000F2EE C680 ldab #CBEIF ; start the command by writi
0000F2F0 7B0105 stab FSTAT
0000F2F3 F60105 ldab FSTAT ; check to see if there was
 ; the command.
0000F2F6 C530 bitb #PVIOL+ACCERR ; if either the PVIOL or ACC
0000F2F8 2627 bne Return ; return.
0000F2FA 1F010580FB brclr FSTAT,#CBEIF,* ; wait here till the command
0000F2FF 6380 dec NumWords,sp ; any more words to program?
0000F301 26E2 bne ProgLoop ; yes. continue until done.
0000F303 1F010540FB brclr FSTAT,#CCIF,* ; no. wait until all command
 ;
0000F308 E6FA0290 ldab DataBytes,pcr ; get the block size.
0000F30C 54 lsrb ; divide the byte count by 2
 ; word at a time.
0000F30D 6B80 stab NumWords,sp
0000F30F EEFA028A ldx PPAGEWAddr,pcr ; get the PPAGE window Flash
0000F313 19FA028B leay SRecData,pcr ; point to the received S-Re
0000F317 EC71 VerfLoop: ldd 2,y+ ; get a word from the buffer
0000F319 AC31 cpd 2,x+ ; same as the word in Flash?
0000F31B 2604 bne Return ; no. return w/ an error (!=
0000F31D 6380 dec NumWords,sp ; yes. done comparing all wo
0000F31F 26F6 bne VerfLoop ; no. compare some more.
 ;
0000F321 33 Return: pulb ; deallocate the local.
0000F322 3D rts ; return.
 ;
 ;

;***
 ;
0000F323 offset 0
0000F323 PCSave: set *
00000000 org $0
 ;
00000000 BlockCnt: ds.b 1 ; number of 64K blocks to er
 ;
00000001 LocalSize: set *
 ;
00000001 switch .text
00000001 ifc '.text','.text'
0000F323 org PCSave

A
p

p
licatio

n
 N

o
te

46
M

O
T

O
R

O
LA

 endif
 ;
0000F323 C603 EraseFlash: ldab #$03

o allow writes to the

 block select bits based
egister.

 2 bits.

mmand

red.

 completed.
 the BLANK bit did not set.

.

e.
4K Flash block.
cks?

erately because it

an access it.

tblock is protected.

s that will be
A
N

2153

0000F325 37 pshb
0000F326 C630 ldab #$30
0000F328 5B30 EraseLoop: stab PPAGE ; write the PPAGE register t
 ; proper Flash block.
0000F32A 54 lsrb ; calculate the value of the
0000F32B 54 lsrb ; on bits 3:2 of the PPAGE r
0000F32C 51 comb
0000F32D C403 andb #$03 ; mask off all but the lower
0000F32F 7B0103 stab FCNFG ; select the block to erase.
0000F332 CE8000 ldx #FlashStart ; latch address for erase co
0000F335 C641 ldab #ERASE+MASS ; perform a bulk erase.
0000F337 0760 bsr EraseCmd
0000F339 2621 bne SaveError ; if CCR Z=0, an error occur
0000F33B C605 ldab #ERVER+MASS ; perform an erase verify.
0000F33D 075A bsr EraseCmd
0000F33F 1F010540FB VerfCmdOK: brclr FSTAT,#CCIF,* ; wait until the command has
0000F344 1E01050404 brset FSTAT,#BLANK,Erased ; flag a not erased error if
0000F349 8601 ldaa #FEraseError
0000F34B 200F bra SaveError
0000F34D C604 Erased: ldab #BLANK ; clear the BLANK status bit
0000F34F 7B0105 stab FSTAT
0000F352 D630 ldab PPAGE ; get the current PPAGE valu
0000F354 CB04 addb #$04 ; add 4 to select the next 6
0000F356 6380 dec BlockCnt,sp ; done with 3 of the 64K blo
0000F358 26CE bne EraseLoop ; no.
0000F35A 0706 bsr EraseBlk0 ; block 0 must be erased sep
 ; contains the bootblock.
0000F35C 6AFA023A SaveError: staa ErrorFlag,pcr ; put error code where pod c
0000F360 33 FEEDone: pulb
0000F361 3D rts ; return.
 ;
 ;EraseBlk0 erases Flash block 0 a sector (512 bytes) at a time because the boo
 ;
0000F362 offset 0
0000F362 PCSave: set *
00000000 org $0
 ;
00000000 PPAGECnt: ds.b 1 ; number of 16K PPAGE window
 ; completely erased.
 ;
00000001 LocalSize: set *
 ;
00000001 switch .text
00000001 ifc '.text','.text'
0000F362 org PCSave
 endif
 ;

A
N

215

M
O

T
O

R
O

LA
47

A
pplication N

ote
C

ode Listing
0000F362 1808AF03 EraseBlk0: movb #3,1,-sp ; 3 16K PPAGE windows will be completely erased.
0000F366 5B30 stab PPAGE ; PPAGE for first 16K page of block 0
 ; (passed in the B accumulator).

.
PPAGE window.
GE window.
a sector at a time.
 A indiciates a sector

locks?

 the PPAGE window.
s in PPAGE $3F

the bootblock.
 the stack.

se command, do a verify.
 error code in a.

 error code in a.

g sectors.

mmand.

.
iage violation &
ar.

 completed.

n a block (64K)
3

0000F368 790103 clr FCNFG ; set block select bits to 0
0000F36B CE8000 EraseBlk0Loop: ldx #FlashStart ; point to the start of the
0000F36E C620 ldab #PPAGESize/SectorSize ; number of sectors in a PPA
0000F370 0712 bsr EraseSectors ; go erase the PPAGE window
0000F372 260E bne BadBlk0 ; non-zero value returned in
 ; didn't erase.
0000F374 720030 inc PPAGE ; go to the next PPAGE.
0000F377 6380 dec PPAGECnt,sp ; done with all full PPAGE b
0000F379 26F0 bne EraseBlk0Loop ; no. erase more blocks.
0000F37B CE8000 ldx #FlashStart ; yes. point to the start of
0000F37E C618 ldab #(PPAGESize-BootBlkSize)/SectorSize ; number of sector
 ; minus the bootblock.
0000F380 0702 bsr EraseSectors ; erase all sectors outside
0000F382 33 BadBlk0: pulb ; remove the page count from
0000F383 3D rts

 ;
 ;Erases 'b' (accumulator) sectors beginning at address 'x' (index register)
 ;
0000F384 B796 EraseSectors: exg b,y ; put the sector count in y.
0000F386 C640 EraseSectLoop: ldab #ERASE ; perform a sector erase.
0000F388 070F bsr EraseCmd
0000F38A 2701 beq DoEraseVerf ; if no problem with the era
0000F38C 3D Rtn: rts ; if problem, return with an
0000F38D 0723 DoEraseVerf: bsr VerfSector
0000F38F 26FB bne Rtn ; if problem, return with an
0000F391 1AE20200 leax SectorSize,x ; point to the next sector.
0000F395 0436EE dbne y,EraseSectLoop ; continue to erase remainin
0000F398 3D rts ; done. return.
 ;
 ;Erases a block or sector of Flash
 ;
0000F399 6C00 EraseCmd: std 0,x ; latch address for erase co
0000F39B 7B0106 stab FCMD
0000F39E C680 ldab #CBEIF
0000F3A0 7B0105 stab FSTAT ; initiate the erase command
0000F3A3 1F01053003 brclr FSTAT,#PVIOL+ACCERR,EraseCmdOK ; continue if the privl
 ; Access error flags are cle
0000F3A8 8601 ldaa #FEraseError
0000F3AA 3D rts
0000F3AB 1F010540FB EraseCmdOK: brclr FSTAT,#CCIF,* ; wait until the command has
0000F3B0 87 clra
0000F3B1 3D rts
 ;
 ;Verify that a sector was properly erased
 ;Must verify a word at a time because the built in verify command only works o
 ;

A
p

p
licatio

n
 N

o
te

48
M

O
T

O
R

O
LA

0000F3B2 34 VerfSector: pshx ; save the base address of the sector.
0000F3B3 35 pshy ; save the sector count.
0000F3B4 CD0100 ldy #SectorSize/2 ; we'll check 2 bytes at a time.

.

ount.

f the sector.

ess, data & checksum fields.
um.

ariables.
fer.
e 24 bit address
it address).
eceiver.

character.
record character (ASCII 'S')
d?
ord.
ord. (16-bit load address)

 (16-bit load address)
ord.

t load address)
character received.

 to compensate for
A
N

2153

0000F3B7 EC31 VerfSectLoop: ldd 2,x+ ; get a byte from the sector
0000F3B9 048404 ibeq d,WordOK
0000F3BC 8601 ldaa #FEraseError
0000F3BE 2004 bra SectRtn
0000F3C0 0436F4 WordOK: dbne y,VerfSectLoop ; yes. dec the sector word c
0000F3C3 87 clra
0000F3C4 31 SectRtn: puly ; restore the sector count.
0000F3C5 30 pulx ; restore the base address o
0000F3C6 3D rts ; return.
 ;

;***
 ;
0000F3C7 offset 0
0000F3C7 PCSave: set *
00000000 org $0
 ;
00000000 SRecBytes: ds.b 1 ; number of bytes in the addr
00000001 CheckSum: ds.b 1 ; used for calculated checks
 ;
00000002 LocalSize: set *
 ;
00000002 switch .text
00000001 ifc '.text','.text'
0000F3C7 org PCSave
 endif
 ;
0000F3C7 GetSRecord: equ *
0000F3C7 1B9E leas -LocalSize,sp ; allocate stack space for v
0000F3C9 1AFA01D2 leax LoadAddr,pcr ; point to the code/data buf
0000F3CD 6900 clr 0,x ; clear the upper byte of th
 ; (in case we receive a 16-b
0000F3CF 15FA0171 LookForSOR: jsr getchar,pcr ; get a character from the r
0000F3D3 C153 cmpb #'S' ; start-of-record character?
0000F3D5 26F8 bne LookForSOR ; no. go back & get another
0000F3D7 15FA0169 jsr getchar,pcr ; yes. we found the start-of-
0000F3DB C130 cmpb #S0RecType ; found an S0 (header) recor
0000F3DD 2602 bne CheckForS9 ; no. go check for an S9 rec
0000F3DF 200A bra Addr16 ; yes. go receive the S0 rec
 ;
0000F3E1 C139 CheckForS9: cmpb #S9RecType ; found an S9 (end) record?
0000F3E3 2602 bne ChkForS1 ; no. go check for an S1 rec
0000F3E5 2004 bra Addr16 ; go receive the S9 record.
 ;
0000F3E7 C131 ChkForS1: cmpb #S1RecType ; found an S1 record? (16-bi
0000F3E9 2609 bne ChkForS2 ; no. false start-of-record
 ; go check for another.
0000F3EB 08 Addr16: inx ; adjust the storage pointer

A
N

215

M
O

T
O

R
O

LA
49

A
pplication N

ote
C

ode Listing
 ; a 2 byte load address.
0000F3EC 8603 ldaa #3 ; 2 address bytes plus the checksum.
0000F3EE 6AFA01AA staa DataBytes,pcr

dress)

nsfer address)
 of Record.
hecksum.

te.
or.
-Record bytes we

lculation with the

& checksum field
 count.
ize.
64?

s limited to 64 bytes.
 in a.

or.
buffer.
ksum.

bytes?

sult will be zero.

 return a non-zero

i hex nine?
urn a zero ccr indication.

 return a non-zero
3

0000F3F2 2010 bra SaveRecType ; go receive the S9 record.
 ;
0000F3F4 C132 ChkForS2: cmpb #S2RecType ; S2 record? (24-bit load ad
0000F3F6 2602 bne ChkForS8
0000F3F8 2004 bra Addr24 ; go receive the S9 record.
 ;
0000F3FA C138 ChkForS8: cmpb #S8RecType ; no. s8 record? (24-bit tra
0000F3FC 26D1 bne LookForSOR ; no. go look for next Start
0000F3FE 8604 Addr24: ldaa #4 ; 3 address bytes plus the c
0000F400 6AFA0198 staa DataBytes,pcr
0000F404 6BFA0193 SaveRecType: stab RecType,pcr ; yes. save the record type.
 ;
0000F408 15FA003E RcvSRec: jsr GetHexByte,pcr ; get the S-Record length by
0000F40C 2626 bne BadSRec ; return if there was an err
0000F40E 6B80 stab SRecBytes,sp ; save the total number of S
 ; are to receive.
0000F410 6B81 stab CheckSum,sp ; initialize the checksum ca
 ; data byte count
0000F412 E0FA0186 subb DataBytes,pcr ; subtract the load address
 ; length from the data field
0000F416 6BFA0182 stab DataBytes,pcr ; save the code/data field s
0000F41A C140 cmpb #64 ; is the code/data field <=
0000F41C 2304 bls RcvData ; yes. it can be received.
0000F41E 8606 ldaa #SRecLenErr ; no. the code/data field i
0000F420 2012 bra BadSRec ; return with the error code
0000F422 15FA0024 RcvData: jsr GetHexByte,pcr ; get an S-Record data byte.
0000F426 260C bne BadSRec ; return if there was an err
0000F428 6B30 stab 1,x+ ; save the byte in the data
0000F42A EB81 addb CheckSum,sp ; add the byte into the chec
0000F42C 6B81 stab CheckSum,sp ; save the result.
0000F42E 6380 dec SRecBytes,sp ; received all the S-Record
0000F430 26F0 bne RcvData ; no. go get some more.
0000F432 6281 inc CheckSum,sp ; if checksum was ok, the re
0000F434 1B82 BadSRec: leas LocalSize,sp
0000F436 3D rts
 ;

;***
 ;
0000F437 IsHex: equ *
0000F437 C130 cmpb #'0' ; less than ascii hex zero?
0000F439 250E blo NotHex ; yes. character is not hex.
 ; ccr indication.
0000F43B C139 cmpb #'9' ; less than or equal to asci
0000F43D 2308 bls IsHex1 ; yes. character is hex. ret
0000F43F C141 cmpb #'A' ; less than ascii hex 'A'?
0000F441 2506 blo NotHex ; yes. character is not hex.
 ; ccr indication.

A
p

p
licatio

n
 N

o
te

50
M

O
T

O
R

O
LA

0000F443 C146 cmpb #'F' ; less than or equal to ascii hex 'F'?
0000F445 2202 bhi NotHex ; yes. character is hex. return a non-zero
 ; ccr indication.

cation.

the SCI.

ry.
 ccr indication.
acter to binary.
ts.

the SCI.

ry.
om the stack.
 ccr indication.
acter to binary.
.
r bit.

e hex character.

tter ('A' - 'F').

ing to the display.
ointer, null?

A
N

2153

0000F447 1404 IsHex1: orcc #$04 ; no. return a zero ccr indi
0000F449 3D NotHex: rts
 ;

;***
 ;
0000F44A GetHexByte: equ *
0000F44A 15FA00F6 jsr getchar,pcr ; get the upper nybble from
0000F44E 07E7 bsr IsHex ; valid hex character?
0000F450 2701 beq OK1 ; yes. go convert it to bina
0000F452 3D rts ; no. return with a non-zero
0000F453 0714 OK1: bsr CvtHex ; convert the ascii-hex char
0000F455 8610 ldaa #16 ; shift it to the upper 4-bi
0000F457 12 mul
0000F458 37 pshb ; save it on the stack.
0000F459 15FA00E7 jsr getchar,pcr ; get the lower nybble from
0000F45D 07D8 bsr IsHex ; valid hex character?
0000F45F 2702 beq OK2 ; yes. go convert it to bina
0000F461 33 pulb ; remove saved upper byte fr
0000F462 3D rts ; no. return with a non-zero
0000F463 0704 OK2: bsr CvtHex ; convert the ascii-hex char
0000F465 EBB0 addb 1,sp+ ; add it to the upper nybble
0000F467 87 clra ; simple way to set the Z cc
0000F468 3D rts ; return.
 ;

;***
 ;
0000F469 C030 CvtHex: subb #'0' ; subtract ascii '0' from th
0000F46B C109 cmpb #$09 ; was it a decimal digit?
0000F46D 2302 bls CvtHexRtn ; yes. ok as is.
0000F46F C007 subb #$07 ; no. it was an ascii hex le
0000F471 3D CvtHexRtn: rts
 ;

;***
 ;
0000F472 OutStr: equ * ; send a null terminated str
0000F472 E630 ldab 1,x+ ; get a character, advance p
0000F474 2706 beq OutStrDone ; yes. return.
0000F476 15FA00FF jsr putchar,pcr ; no. send it out the SCI.
0000F47A 20F6 bra OutStr ; go get the next character.
0000F47C 3D OutStrDone: rts
 ;
 ;

;***
 ;
00000020 RxBufSize: equ 32 ; receive queue size.
00000010 TxBufSize: equ 16 ; transmit queue size.
 ;

A
N

215

M
O

T
O

R
O

LA
51

A
pplication N

ote
C

ode Listing
00000018 XOnCount: equ RxBufSize-8 ; number of bytes avail. in the Rx queue
 ; before an XOn can be sent.
0000000A XOffCount: equ 10 ; number of bytes remaining in the Rx queue

 the Rx queue.
ed from the Rx queue.
 the Tx queue
from the Tx queue.
e Rx queue.
e Tx queue.
sent.
an XOff to the host if != 0.

egister.
Rx interrupt.
upts.
r to point to the
 service routine.

vice Rx interrupt.

ce Tx interrupt

t to the host?
 char in the Rx queue.
s available in the Rx queue.
receive a FIFO full

 byte in the Rx queue.
 be sent by the Tx ISR.
pts.
3

 ; when an XOff is sent.
 ;
00000011 XOn: equ $11 ; ASCII DC1
00000013 XOff: equ $13 ; ASCII DC3
 ;
0000F47D 000000000000 RxBuff: dcb RxBufSize,0 ; receive queue.
0000F49D 000000000000 TxBuff: dcb TxBufSize,0 ; transmit queue.
0000F4AD 00 RxIn: dc.b 0 ; next available location in
0000F4AE 00 RxOut: dc.b 0 ; next character to be remov
0000F4AF 00 TxIn: dc.b 0 ; next available location in
0000F4B0 00 TxOut: dc.b 0 ; next character to be sent
0000F4B1 20 RxBAvail: dc.b RxBufSize ; number of bytes left in th
0000F4B2 10 TxBAvail: dc.b TxBufSize ; number of bytes left in th
0000F4B3 00 XOffSent: dc.b 0 ; if != 0, an XOff has been
0000F4B4 00 SendXOff: dc.b 0 ; request to TX ISR to send

 ;
 ;

;***
 ;
0000F4B5 5CC8 SCIInit: std SCI0BD ; initialize the baud rate r
0000F4B7 C62C ldab #TE+RE+RIE ; get bit mask for Tx, Rx &
0000F4B9 5BCB stab SCI0CR2 ; enable Tx & Rx & Rx interr
0000F4BB 1AFA0004 leax SCIISR,pcr ; setup SCI0 interrupt vecto
0000F4BF 7EFFD6 stx SCI0 ; bootloader's SCI interrupt
0000F4C2 3D rts ; done.
 ;

;***
 ;
0000F4C3 4FCB2004 SCIISR: brclr SCI0CR2,#RIE,ChkRxInts ; Rx interrupts enabled?
0000F4C7 4ECC2009 brset SCI0SR1,#RDRF,RxIRQ ; yes. if RDRF flag set, ser
0000F4CB 4FCB8004 ChkRxInts: brclr SCI0CR2,#TIE,NoSCIInt ; Tx interrupts enabled?
0000F4CF 4ECC8035 brset SCI0SR1,#TDRE,TxIRQ ; Yes. if TDRE is set, servi
0000F4D3 0B NoSCIInt: rti ; return w/o any action.
 ;

;***
 ;
0000F4D4 E7F9DC RxIRQ: tst XOffSent,pcr ; was an XOff previously sen
0000F4D7 2610 bne AlreadySent ; yes. go place the received
0000F4D9 A6F9D5 ldaa RxBAvail,pcr ; no. get the number of byte
0000F4DC 810A cmpa #XOffCount ; more than enough space to
 ; of data from the host?
0000F4DE 2209 bhi AlreadySent ; yes. go place the received
0000F4E0 72F4B4 inc SendXOff ; set flag so that XOff will
0000F4E3 4CCB80 bset SCI0CR2,#TIE ; enable transmitter interru
0000F4E6 62F9CA inc XOffSent,pcr ; set the 'XOff Sent' flag
 ;

A
p

p
licatio

n
 N

o
te

52
M

O
T

O
R

O
LA

0000F4E9 E7F9C5 AlreadySent: tst RxBAvail,pcr ; any room left in the Rx queue?
0000F4EC 2717 beq Buffull ; no. just throw the character away.
0000F4EE 63F9C0 dec RxBAvail,pcr ; yes. there'll be one less now.

t of the Rx queue.
 available queue location.
.

ion.
eue?

 queue.
queue location index.
errupt.

aracter & throw it away.

om the Tx queue.
g.

e Tx queue?

 next interrupt

t of the Tx queue.
 character to send.

to send.
ue?

 the queue.

d.
ff TDRE interrupts.

n the Rx queue?
A
N

2153

0000F4F1 1AF989 leax RxBuff,pcr ; point to the physical star
0000F4F4 A6F9B6 ldaa RxIn,pcr ; get the index for the next
0000F4F7 D6CF ldab SCI0DRL ; get the received character
0000F4F9 6BE4 stab a,x ; place it in the queue.
0000F4FB 42 inca ; next available queue locat
0000F4FC 8120 cmpa #RxBufSize ; wrap around to start of qu
0000F4FE 2501 blo NoRxWrap ; no. just update the index.
0000F500 87 clra ; yes. start at begining of
0000F501 6AF9A9 NoRxWrap: staa RxIn,pcr ; update the next available
0000F504 0B rti ; return from the SCI Rx int
 ;
0000F505 D6CF Buffull: ldab SCI0DRL ; the queue was full. get ch
0000F507 0B rti ; return.
 ;

;***
 ;
0000F508 F7F4B4 TxIRQ: tst SendXOff ; request to send an XOff.
0000F50B 2712 beq NoSendXOff ; no. go send a character fr
0000F50D 69F9A4 clr SendXOff,pcr ; yes. clear the request fla
0000F510 C613 ldab #XOff ; get the XOff character.
0000F512 5BCF stab SCI0DRL ; send it.
0000F514 E6F99B ldab TxBAvail,pcr ; any other characters in th
0000F517 C110 cmpb #TxBufSize
0000F519 2622 bne TxRTI ; yes. just return & let the
 ; send the character.
0000F51B 4DCB80 bclr SCI0CR2,#TIE ; no. disable Tx interrupts.
0000F51E 0B rti ; return.
 ;
0000F51F 1AF97B NoSendXOff: leax TxBuff,pcr ; point to the physical star
0000F522 A6F98B ldaa TxOut,pcr ; get the index for the next
0000F525 E6E4 ldab a,x ; get the data.
0000F527 5BCF stab SCI0DRL ; send it.
0000F529 42 inca ; advance to next character
0000F52A 8110 cmpa #TxBufSize ; reached the end of the que
0000F52C 2501 blo NoTxWrap ; no.
0000F52E 87 clra ; yes. wrap to the start.
0000F52F 6AF97E NoTxWrap: staa TxOut,pcr ; update the queue index.
0000F532 62F97D inc TxBAvail,pcr ; one more byte available in
0000F535 A1F977 cmpa TxIn,pcr ; TxIn = TxOut?
0000F538 2603 bne TxRTI ; no. more characters to sen
0000F53A 4DCB80 bclr SCI0CR2,#TIE ; yes. queue is empty turn o
0000F53D 0B TxRTI: rti ; return.
 ;

;***
 ;
0000F53E C620 SCIGetBuf: ldab #RxBufSize ; are there any characters i
0000F540 E0F96E subb RxBAvail,pcr

A
N

215

M
O

T
O

R
O

LA
53

A
pplication N

ote
C

ode Listing
0000F543 3D rts ; return number available.
 ;

;***

se.

re.
t of the Rx queue.
available character

 in the queue.
ue?

m the queue, there's

iously sent by the RX ISR?

s available in the Rx queue.
receive more?

retrieved from the Rx queue.
he host.

etrieved from the Rx queue.

se.

eue?
 is.
t of the Tx queue.
available spot.

e spot.
ue?

art.

 the Tx queue.
pts.
3

 ;
0000F544 34 getchar: pshx ; save the registers we'll u
0000F545 36 psha
0000F546 C620 RxChk: ldab #RxBufSize ; any characters available?
0000F548 E0F966 subb RxBAvail,pcr
0000F54B 27F9 beq RxChk ; no. just wait until some a
0000F54D 1AF92D leax RxBuff,pcr ; point to the physical star
0000F550 A6F95B ldaa RxOut,pcr ; get the index to the next
 ; in the Rx queue.
0000F553 E6E4 ldab a,x ; get the character.
0000F555 42 inca ; point to the next location
0000F556 8120 cmpa #RxBufSize ; reached the end of the que
0000F558 2501 blo NogcWrap ; no.
0000F55A 87 clra ; yes. wrap to the start.
0000F55B 6AF950 NogcWrap: staa RxOut,pcr ; update the queue index.
0000F55E 62F950 inc RxBAvail,pcr ; we removed a character fro
 ; 1 more available.
0000F561 E7F94F tst XOffSent,pcr ; was an XOff character prev
0000F564 2710 beq gcReturn ; no. just return.
0000F566 A6F948 ldaa RxBAvail,pcr ; yes. get the number of byte
0000F569 8118 cmpa #XOnCount ; enough space available to
0000F56B 2409 bhs gcReturn ; no. just return.
0000F56D 37 pshb ; yes. save the character we
0000F56E C611 ldab #XOn ; send an XOn character to t
0000F570 0707 bsr putchar
0000F572 69F93E clr XOffSent,pcr ; clear the XOff flag.
0000F575 33 pulb ; restore the character we r
0000F576 32 gcReturn: pula ; restore what we saved.
0000F577 30 pulx
0000F578 3D rts ; return.
 ;

;***
 ;
0000F579 34 putchar: pshx ; save the registers we'll u
0000F57A 36 psha
0000F57B E7F934 TxChk: tst TxBAvail,pcr ; Any room left in the Tx qu
0000F57E 27FB beq TxChk ; no. just wait here till it
0000F580 1AF91A leax TxBuff,pcr ; point to the physical star
0000F583 A6F929 ldaa TxIn,pcr ; get the index to the next
0000F586 6BE4 stab a,x ; put the character in.
0000F588 42 inca ; point to the next availabl
0000F589 8110 cmpa #TxBufSize ; go past the end of the que
0000F58B 2501 blo NopcWrap ; no.
0000F58D 87 clra ; yes. wrap around to the st
0000F58E 6AF91E NopcWrap: staa TxIn,pcr ; update the queue index
0000F591 63F91E dec TxBAvail,pcr ; one less byte available in
0000F594 4CCB80 bset SCI0CR2,#TIE ; enable transmitter interru

A
p

p
licatio

n
 N

o
te

54
M

O
T

O
R

O
LA

0000F597 32 pula ; restore what we saved.
0000F598 30 pulx
0000F599 3D rts ; return

us routines.
= S0; '1' = S1; '2' = S2;

e S-Record.
0 - $BFFF)
rd.
ndle 64-byte S-Records

vector table. Each one
 in this table. Each jmp
ssing to access the
ock.

A
N

2153

 ;
 ;
0000F59A BootLoadEnd: equ *
 ;
 ;
 ;
 ;Global Variable declarations
 ;
 ;
0000F59A ErrorFlag: ds.b 1 ; error code stored by vario
0000F59B RecType: ds.b 1 ; received record type. '0'
 ; '8' = S8; '9' = S9
0000F59C DataBytes: ds.b 1 ; number of data bytes in th
0000F59D PPAGEWAddr: ds.b 2 ; PPAGE window address ($800
0000F59F LoadAddr: ds.b 3 ; load address of the S-Reco
0000F5A2 SRecData: ds.b 65 ; S-Record data storage. (ha
 ; + received checksum)
 ;
 ;

;***
 ;
 ; This is the jump table that is used to access the secondary interrupt
 ; of the actual interrupt vectors, begining at $ff8c, points to an entry
 ; instruction uses indexed indirect program counter relative (pcr) addre
 ; secondary interrupt vector table that is located just below the bootbl
 ;

;***
 ;
0000F5E3 05FBF9A5 JPWMEShutdown: jmp [PWMEShutdown-BootBlkSize,pcr]
0000F5E7 05FBF9A3 JPortPInt: jmp [PortPInt-BootBlkSize,pcr]
0000F5EB 05FBF9A1 JMSCAN4Tx: jmp [MSCAN4Tx-BootBlkSize,pcr]
0000F5EF 05FBF99F JMSCAN4Rx: jmp [MSCAN4Rx-BootBlkSize,pcr]
0000F5F3 05FBF99D JMSCAN4Errs: jmp [MSCAN4Errs-BootBlkSize,pcr]
0000F5F7 05FBF99B JMSCAN4WakeUp: jmp [MSCAN4WakeUp-BootBlkSize,pcr]
0000F5FB 05FBF999 JMSCAN3Tx: jmp [MSCAN3Tx-BootBlkSize,pcr]
0000F5FF 05FBF997 JMSCAN3Rx: jmp [MSCAN3Rx-BootBlkSize,pcr]
0000F603 05FBF995 JMSCAN3Errs: jmp [MSCAN3Errs-BootBlkSize,pcr]
0000F607 05FBF993 JMSCAN3WakeUp: jmp [MSCAN3WakeUp-BootBlkSize,pcr]
0000F60B 05FBF991 JMSCAN2Tx: jmp [MSCAN2Tx-BootBlkSize,pcr]
0000F60F 05FBF98F JMSCAN2Rx: jmp [MSCAN2Rx-BootBlkSize,pcr]
0000F613 05FBF98D JMSCAN2Errs: jmp [MSCAN2Errs-BootBlkSize,pcr]
0000F617 05FBF98B JMSCAN2WakeUp: jmp [MSCAN2WakeUp-BootBlkSize,pcr]
0000F61B 05FBF989 JMSCAN1Tx: jmp [MSCAN1Tx-BootBlkSize,pcr]
0000F61F 05FBF987 JMSCAN1Rx: jmp [MSCAN1Rx-BootBlkSize,pcr]
0000F623 05FBF985 JMSCAN1Errs: jmp [MSCAN1Errs-BootBlkSize,pcr]
0000F627 05FBF983 JMSCAN1WakeUp: jmp [MSCAN1WakeUp-BootBlkSize,pcr]
0000F62B 05FBF981 JMSCAN0Tx: jmp [MSCAN0Tx-BootBlkSize,pcr]

A
N

215

M
O

T
O

R
O

LA
55

A
pplication N

ote
C

ode Listing
0000F62F 05FBF97F JMSCAN0Rx: jmp [MSCAN0Rx-BootBlkSize,pcr]
0000F633 05FBF97D JMSCAN0Errs: jmp [MSCAN0Errs-BootBlkSize,pcr]
0000F637 05FBF97B JMSCAN0WakeUp: jmp [MSCAN0WakeUp-BootBlkSize,pcr]

ash block 0.

 unsecured state.
3

0000F63B 05FBF979 JFlash: jmp [Flash-BootBlkSize,pcr]
0000F63F 05FBF977 JEEPROM: jmp [EEPROM-BootBlkSize,pcr]
0000F643 05FBF975 JSPI2: jmp [SPI2-BootBlkSize,pcr]
0000F647 05FBF973 JSPI1: jmp [SPI1-BootBlkSize,pcr]
0000F64B 05FBF971 JIICBus: jmp [IICBus-BootBlkSize,pcr]
0000F64F 05FBF96F JDLC: jmp [DLC-BootBlkSize,pcr]
0000F653 05FBF96D JSCME: jmp [SCMEVect-BootBlkSize,pcr]
0000F657 05FBF96B JCRGLock: jmp [CRGLock-BootBlkSize,pcr]
0000F65B 05FBF969 JPACCBOv: jmp [PACCBOv-BootBlkSize,pcr]
0000F65F 05FBF967 JModDnCtr: jmp [ModDnCtr-BootBlkSize,pcr]
0000F663 05FBF965 JPortHInt: jmp [PortHInt-BootBlkSize,pcr]
0000F667 05FBF963 JPortJInt: jmp [PortJInt-BootBlkSize,pcr]
0000F66B 05FBF961 JATD1: jmp [ATD1-BootBlkSize,pcr]
0000F66F 05FBF95F JATD0: jmp [ATD0-BootBlkSize,pcr]
0000F673 05FBF95D JSCI1: jmp [SCI1-BootBlkSize,pcr]
0000F677 05FBF95B JSCI0: jmp [SCI0-BootBlkSize,pcr]
0000F67B 05FBF959 JSPI0: jmp [SPI0-BootBlkSize,pcr]
0000F67F 05FBF957 JPACCAEdge: jmp [PACCAEdge-BootBlkSize,pcr]
0000F683 05FBF955 JPACCAOv: jmp [PACCAOv-BootBlkSize,pcr]
0000F687 05FBF953 JTimerOv: jmp [TimerOv-BootBlkSize,pcr]
0000F68B 05FBF951 JTimerCh7: jmp [TimerCh7-BootBlkSize,pcr]
0000F68F 05FBF94F JTimerCh6: jmp [TimerCh6-BootBlkSize,pcr]
0000F693 05FBF94D JTimerCh5: jmp [TimerCh5-BootBlkSize,pcr]
0000F697 05FBF94B JTimerCh4: jmp [TimerCh4-BootBlkSize,pcr]
0000F69B 05FBF949 JTimerCh3: jmp [TimerCh3-BootBlkSize,pcr]
0000F69F 05FBF947 JTimerCh2: jmp [TimerCh2-BootBlkSize,pcr]
0000F6A3 05FBF945 JTimerCh1: jmp [TimerCh1-BootBlkSize,pcr]
0000F6A7 05FBF943 JTimerCh0: jmp [TimerCh0-BootBlkSize,pcr]
0000F6AB 05FBF941 JRTI: jmp [RTI-BootBlkSize,pcr]
0000F6AF 05FBF93F JIRQ: jmp [IRQ-BootBlkSize,pcr]
0000F6B3 05FBF93D JXIRQ jmp [XIRQ-BootBlkSize,pcr]
0000F6B7 05FBF93B JSWI: jmp [SWI-BootBlkSize,pcr]
0000F6BB 05FBF939 JIllop: jmp [Illop-BootBlkSize,pcr]
0000F6BF 05FBF937 JCOPFail: jmp [COPFail-BootBlkSize,pcr]
0000F6C3 05FBF935 JClockFail: jmp [ClockFail-BootBlkSize,pcr]
 ;
0000FF0D org $ff0d
 ;
0000FF0D CF dc.b $cf ; setup a 4K bootblock in Fl
 ;
0000FF0F org $ff0f ; location of security byte.
 ;
0000FF0F FE dc.b $fe ; value of security byte for
 ;
0000FF8C org $ff8c
 ;
0000FF8C F5E3 PWMEShutdown: dc.w JPWMEShutdown

A
p

p
licatio

n
 N

o
te

56
M

O
T

O
R

O
LA

0000FF8E F5E7 PortPInt: dc.w JPortPInt
0000FF90 F5EB MSCAN4Tx: dc.w JMSCAN4Tx
0000FF92 F5EF MSCAN4Rx: dc.w JMSCAN4Rx
A
N

2153

0000FF94 F5F3 MSCAN4Errs: dc.w JMSCAN4Errs
0000FF96 F5F7 MSCAN4WakeUp: dc.w JMSCAN4WakeUp
0000FF98 F5FB MSCAN3Tx: dc.w JMSCAN3Tx
0000FF9A F5FF MSCAN3Rx: dc.w JMSCAN3Rx
0000FF9C F603 MSCAN3Errs: dc.w JMSCAN3Errs
0000FF9E F607 MSCAN3WakeUp: dc.w JMSCAN3WakeUp
0000FFA0 F60B MSCAN2Tx: dc.w JMSCAN2Tx
0000FFA2 F60F MSCAN2Rx: dc.w JMSCAN2Rx
0000FFA4 F613 MSCAN2Errs: dc.w JMSCAN2Errs
0000FFA6 F617 MSCAN2WakeUp: dc.w JMSCAN2WakeUp
0000FFA8 F61B MSCAN1Tx: dc.w JMSCAN1Tx
0000FFAA F61F MSCAN1Rx: dc.w JMSCAN1Rx
0000FFAC F623 MSCAN1Errs: dc.w JMSCAN1Errs
0000FFAE F627 MSCAN1WakeUp: dc.w JMSCAN1WakeUp
0000FFB0 F62B MSCAN0Tx: dc.w JMSCAN0Tx
0000FFB2 F62F MSCAN0Rx: dc.w JMSCAN0Rx
0000FFB4 F633 MSCAN0Errs: dc.w JMSCAN0Errs
0000FFB6 F637 MSCAN0WakeUp: dc.w JMSCAN0WakeUp
0000FFB8 F63B Flash: dc.w JFlash
0000FFBA F63F EEPROM: dc.w JEEPROM
0000FFBC F643 SPI2: dc.w JSPI2
0000FFBE F647 SPI1: dc.w JSPI1
0000FFC0 F64B IICBus: dc.w JIICBus
0000FFC2 F64F DLC: dc.w JDLC
0000FFC4 F653 SCMEVect: dc.w JSCME
0000FFC6 F657 CRGLock: dc.w JCRGLock
0000FFC8 F65B PACCBOv: dc.w JPACCBOv
0000FFCA F65F ModDnCtr: dc.w JModDnCtr
0000FFCC F663 PortHInt: dc.w JPortHInt
0000FFCE F667 PortJInt: dc.w JPortJInt
0000FFD0 F66B ATD1: dc.w JATD1
0000FFD2 F66F ATD0: dc.w JATD0
0000FFD4 F673 SCI1: dc.w JSCI1
0000FFD6 F677 SCI0: dc.w JSCI0
0000FFD8 F67B SPI0: dc.w JSPI0
0000FFDA F67F PACCAEdge: dc.w JPACCAEdge
0000FFDC F683 PACCAOv: dc.w JPACCAOv
0000FFDE F687 TimerOv: dc.w JTimerOv
0000FFE0 F68B TimerCh7: dc.w JTimerCh7
0000FFE2 F68F TimerCh6: dc.w JTimerCh6
0000FFE4 F693 TimerCh5: dc.w JTimerCh5
0000FFE6 F697 TimerCh4: dc.w JTimerCh4
0000FFE8 F69B TimerCh3: dc.w JTimerCh3
0000FFEA F69F TimerCh2: dc.w JTimerCh2
0000FFEC F6A3 TimerCh1: dc.w JTimerCh1
0000FFEE F6A7 TimerCh0: dc.w JTimerCh0
0000FFF0 F6AB RTI: dc.w JRTI

A
N

215

M
O

T
O

R
O

LA
57

A
pplication N

ote
C

ode Listing
0000FFF2 F6AF IRQ: dc.w JIRQ
0000FFF4 F6B3 XIRQ: dc.w JXIRQ
0000FFF6 F6B7 SWI: dc.w JSWI
3

0000FFF8 F6BB Illop: dc.w JIllop
0000FFFA F6BF COPFail: dc.w JCOPFail
0000FFFC F6C3 ClockFail: dc.w JClockFail
0000FFFE F000 Reset: dc.w BootStart

 Errors: None
 Labels: 472
 Last Program Address: $0000FFFF
 Last Storage Address: $FFFFFFFF
 Program Bytes: $000006F4 1780
 Storage Bytes: $0000004E 78

Application Note
AN2153

58 MOTOROLA

Application Note
Code Listing
AN2153

MOTOROLA 59

N

O
N

-
D

I
S

C
L

O
S

U
R

E

A
G

R
E

E
M

E
N

T

R
E

Q
U

I
R

E
D

Application Note
AN2153/D

© Motorola, Inc., 2001

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its
products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts.
Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a
situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the
design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1-303-675-2140 or 1-800-441-2447

JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3-20-1, Minami-Azabu, Minato-ku, Tokyo 106-8573 Japan. 81-3-3440-3569

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong. 852-26668334

Technical Information Center: 1-800-521-6274

HOME PAGE: http://www.motorola.com/semiconductors/

	Introduction
	Overview of the MC9S12DP256’s FLASH
	FLASH Control Registers
	FLASH Protection
	FLASH Security
	Utilizing the FLASH Security Back Door
	FLASH Program and Erase Overview
	FLASH Erasure
	FLASH Programming

	General FLASH Serial Bootloader Requirements
	Bootloader S-Record Format
	Using the S-Record Bootloader
	Erase FLASH Command
	Program FLASH Command
	Set Baud Rate Command

	Bootloader Software
	Startup Code
	Bootloader Control Loop
	Program Command Code
	Erase Command Code
	Set Baud Rate Command Code
	S-Record Loader Code
	Serial Communications Code

	Secondary Interrupt Vector Jump Table
	Code Listing

