
University of Florida EEL-3701/4744 Drs. E. Schwartz & A. Arroyo
Department of Electrical & Computer Engineering Professors in ECE

Page 1/3 ASSEMBLY LANGUAGE NOTES 21-Aug-98 5:40 PM

(AS11 Assembler for the 68HC11)
Programs written in assembly language consist of a sequence of source
statements. Each source statement consists of a sequence of ASCII
characters ending with a carriage return.

SOURCE STATEMENT
Each source statement may include up to four fields: a label (or '*' for a
comment line), an operation (instruction mnemonic or assembler directive),
an operand, and a comment.

Label
A symbol starting in the first column is a label and may optionally be ended
with a colon (:).

1. An asterisk (*) as the first character in the label field indicates that the
rest of the source statement is a comment. Comments are ignored by the
assembler, and are printed on the source listing only for programming
information.

2. A whitespace character (blank or tab) as the first character indicates
that the label field is empty. The line has no label and is not a comment.

3. A symbol character as the first character indicates that the line has a
label. Symbol characters are the upper or lower case letters a-z, digits
0-9, and the special characters, period (.), dollar sign ($), and the
underscore (_). Symbols consist of one to fifteen characters, the first of
which must be alphabetic or the special characters period or underscore.
All characters are significant and upper and lower case letters are
distinct.

A symbol may occur only once in the label field. If a symbol does occur
more than once in a label field, then each reference to that symbol will be
flagged with an error.

With the exception of some directives, a label is assigned the value of the
program counter (PC) of the first byte of the instruction or data being
assembled. The value assigned to the label is absolute. Labels may be
ended with a colon (:), although the colon is not part of the label (it only acts
to set the label off from the rest of the source line). Thus the following code
fragments are equivalent:

Fragment 1 Fragment 2
here: deca here deca

bne here bne here

A label may appear on a line by itself. The assembler interprets this as “set
the value of the label equal to the current value of the PC.” For example:

Label EQU *

The symbol table has room for at least 2000 symbols of length 8 characters
or less. Additional characters up to 15 are permissible at expense of
decreasing the maximum number of symbols possible in the table.

Operation Field
The operation field occurs after the label field, and must be preceded by at
least one white space character. The operation field must contain a legal
opcode mnemonic or an assembler directive. Upper case characters in this
field are converted to lower case before being checked as a legal mnemonic.
Thus 'nop', 'NOP' and 'NoP' are recognized as the same mnemonic. Entries
in the operation field may be one of two types.

Opcode (Mnemonic): These correspond directly to the machine
instructions. Note that register names sometimes appear at the end of a
mnemonic (e.g. NEGA or STAB) and therefore must not be separated by any
whitespace characters. Thus, 'CLRA' means clear accumulator 'A', but that
'CLR A' means clear memory location 'A'.

Directive: These are special operation codes known to the assembler which
controls the assembly process rather than being translated into machine
instructions.

Operand Field
The operand field's interpretation is dependent on the contents of the
operation field. The operand field, if required, must follow the operation

field, and must be preceded by at least one whitespace character. The
operand field may contain a symbol, an expression, or a combination of
symbols and expressions separated by commas.

The operand field of machine instructions is used to specify the addressing
mode of the instruction, as well as the operand of the instruction. The
following table summarizes the operand field for the M68HC11 processor.

Operand Format Addressing Mode
no operand Accumulator and Inherent
<expression> Direct, Extended, or Relative
#<expression> Immediate
<expression>,X or Y Indexed with X or Y Register

NOTE: Parenthesis '()' signify optional elements and '<> denote an
expression is inserted. These syntax elements are present only for
clarification of the format and are not inserted as part of the actual source
program. All other characters are significant and must be used when
required.

Expression: An expression is a combination of symbols, constants,
algebraic or logical operators, and parentheses. The expression specifies a
value which is to be used as an operand. Expressions may consist of
symbols or constants joined together by one of the following operators: +
- * / % & | ^. They are evaluated left to right and there is no
provision for parenthesized expressions. Arithmetic is carried out in signed
twos-complement integer precision (16 bits on the IBM PC).

Operator: The operators are the same as in C programming language:
+ add
- subtract
* multiply
/ divide
% remainder after division
& bitwise AND
| bitwise OR
^ bitwise XOR (exclusive-or)

Symbol: Each symbol is associated with a 16-bit integer value which is
used in place of the symbol during the expression evaluation. The asterisk
used in an expression as a symbol represents the current value of the PC.

A symbol is a string of characters with a non-initial digit. The string of
characters may be from the set:

[a-z][A-Z]_.[0-9]$

('.' and '_' count as non-digits). The `$' counts as a digit to avoid confusion
with hexadecimal constants. All characters of a symbol are significant,
with upper and lower case characters being distinct. The maximum
number of characters in a symbol is currently set at 15.

The symbol table has room for at least 2000 symbols of length 8 characters
or less.

Constant: A constant represents a quantity of data that does not vary in
value during the executing of a program. Constants may be presented to the
assembler in one of five formats: decimal, hex, binary, octal, or ASCII. The
default format is decimal. The assembler converts all constants to binary
and displays them in hex. The programmer indicates the number format to
the assembler with the following prefixes:

' ASCII
$ hexadecimal
@ octal
% binary
(None) decimal

Decimal constants consist of up to 5 valid digits (0-9) and must be in the
range 0-65535, inclusive. Hex constants consist of up to four hex characters

University of Florida EEL-3701/4744 Drs. E. Schwartz & A. Arroyo
Department of Electrical & Computer Engineering Professors in ECE

Page 2/3 ASSEMBLY LANGUAGE NOTES 21-Aug-98 5:40 PM

(AS11 Assembler for the 68HC11)
(0-9 and A-F), are preceded by a $ and must be in the range $0000 to
$FFFF. Binary constants consist of up to 16 ones and zeros preceded by a
%. Octal constants consist of up to six valid numeric digits (0-7), are
preceded by an @, and must be in the range @0 to @177777. A single
ASCII character can be used as a constant in expressions. ASCII constants
are preceded by a single quote ('). Any character, including the single
quote, can be used as a character constant. If too many ASCII characters are
given, the assembler assembles the first character and ignores the remainder.

Type Valid Invalid Reason Invalid

Decimal. 12 123456 > 5 digits
12345 12.3 invalid character

Hex $12 ABCD no preceding $
$ABCD $G2A invalid character
$001F $2F018 > 4 characters

Binary %00101 1010101 missing %
%1 %10011000

101010111
> 16 digits

%10100 %210101 invalid character

Octal @17634 @2317234 > 6 digits
@377 @277272 out of range
@177600 @23914 invalid character

ASCII '* 'VALID too long

Comment Field
The last field of an assembler source statement is the comment field. This
field is optional and is only printed on the source listing for documentation
purposes. The comment field is separated from the operand field (or from
the operation field if no operation is required) by at least one whitespace
character.

A comment is any text following the operands for a given mnemonic up to
the end of a line. A comment may also be either a line beginning with '*' or
an empty line. Comments are ignored by the assembler, and are printed on
the source listing only for programming information.

Continuations
If a line ends with a backslash (\) then the next line is fetched and added to
the end of the first line. This continues until a line is seen which doesn't end
in \ or until MAXBUF characters have been collected (MAXBUF ≥ 256).

AS11 ASSEMBLER
The assembler output includes an optional listing of the source program and
an object file which is in the Motorola S-Record Format
(filename.s19). The assembler will normally suppress the printing of
the source listing, but this condition and others can be overridden via options
supplied on the command line or within the source program via pseudo
opcodes (OPT). Each line of the listing contains a reference line number, the
address and bytes assembled, and the original source input line.

The assembler for the M68HC11 is named as11.exe. Command line
arguments specify the filenames to assemble.

Assembler Invocation
To run the assembler enter the following command line:

as11 file1 [file2] ... [- option1 option2 ...]

where file1, file2, etc. are the names of the source file(s) you want to
assemble. The source filenames may have extensions but the assembler does
not check for any particular extension (however, do not use the .S19
extension since that is the extension of the object file created by the
assembler. Its creation would overwrite the source file when it is written to
the disk).

The assembler accept options from the command line to be included in the
assembly. These options are the following:

l enable output listing.
nol disable output listing (default).
cre generate cross reference table.
s generate a symbol table.
c enable cycle count.
noc disable cycle count.

If this method of passing commands to the assembler is used rather than the
OPT pseudo opcode , a space should separate the minus sign from the last
file name and the first option. For example:

as11 EX_FILE -l cre
This command assembles file EX_FILE with an output listing and a cross
reference table.

The object file created is written to disk and given the name
filename.S19 where filename is the name of the first source file
specified on the command line. Any errors and the optional listing (if
specified) are written to the standard output (normally displayed on the
screen). The listing and/or error messages may be saved to a file for later
examination or printing by appending an i/o redirection ('>') command to
the command line.

If multiple files are assembled, the 'S1' file will be placed under the first file's
name (file1.S19).

The example command line
as11 myfile

runs the M68HC11 assembler on the source file myfile. The object file
would be written to myfile.s19 and any errors would appear on the
screen. The example command line

as11 test1.asm test2.s -l
runs the HC11 assembler on the source files test1.asm and 'test2.s'.
The object file would be written to test1.s19 and any errors and the
assembly listing would appear on the screen. The example command line

as11 test1.asm test2.s -l cre s>test.lst
runs the HC11 assembler on the source files test1.asm and test2.s.
The object file would be written to test.s19. A listing would be created
followed by a cross-reference and symbol table which would all be written to
the file test.lst.

The listing file contains the address and bytes assembled for each line of
input followed by the original input line (unchanged, but moved over to the
right some). If an input line causes more than 6 bytes to be output (e.g. a
long FCC directive), additional bytes (up to 64) are listed on succeeding
lines with no address preceding them.

Equates cause the value of the expression to replace the address field in the
listing. Equates that have forward references cause Phasing Errors in Pass 2.

Error Messages
Error diagnostics are placed in the listing file just before the line containing
the error. Format of the error line is:

Line_number: Description of error
or

Line_number: Warning --- Description of error

Errors of the first type in pass one cause cancellation of pass two. Warnings
do not cause cancellation of pass two but should cause you to wonder where
they came from. Error messages are meant to be self-explanatory.

If more than one file is being assembled, the file name precedes the error:

File_name,Line_number: Description of error

Finally, some errors are classed as fatal and cause an immediate termination
of the assembly. Generally, these errors occur when a temporary file cannot
be created or is lost during the assembly. Consult your local guru if this
happens.

University of Florida EEL-3701/4744 Drs. E. Schwartz & A. Arroyo
Department of Electrical & Computer Engineering Professors in ECE

Page 3/3 ASSEMBLY LANGUAGE NOTES 21-Aug-98 5:40 PM

(AS11 Assembler for the 68HC11)

Pseudo Opcodes
The OPT pseudo-opcodes allows the following operands:

nol Turn off output listing
l Turn on output listing (default)
noc Disable cycle counts in listing (default)
c Enable cycle counts in listing (clear total cycles)
contc Re-enable cycle counts (don't clear total cycles)
cre Enable printing of a cross reference table
s generate a symbol table

Some of the more common pseudo-ops are not present. The below 4 pseudo-
ops are recognized, but ignored:

SPC Use blank lines instead
END The assembly ends when there is no more input
TTL Use `pr' to get headings and page numbers
NAM[E] Did you ever use this one anyway?

Differences From Other Assemblers
• For indexed addressing, the comma is required before the register; e.g.,
INC X and INC ,X are not the same.

• Macros are not supported.
• Bit manipulation operands are separated by blanks instead of commas

since the 68HC11 has bit manipulation instructions that operate on
indexed addresses.

• The only pseudo-ops supported are:
ORG, FCC, FDB, FCB, EQU, RMB, BSZ, ZMB, FILL, PAGE
and OPT.

Files
filename.S19 S-record output file extension
STDOUT listing and errors (use redirection for listing file)
Fwd_refs Temporary file for forward references
filename.ASM Suggested assembly language source file extension
filename.LST Suggested list file extension

Implementation Notes
This is a classic 2-pass assembler. Pass 1 establishes the symbol table and
pass 2 generates the code.

ASSEMBLER DIRECTIVES SUMMARY

Assembly Control
ORG Origin program counter

Symbol Definition
EQU Assign permanent value

Data Definition/Storage Allocation
BSZ Block storage of zero; single bytes
FCB Form constant byte
FCC Form constant character string
FDB Form constant double byte
FILL Initialize a block of memory to a constant
RMB Reserve memory; single bytes
ZMB Zero memory bytes; same as BSZ

Listing Control
OPT c Enable cycle counting
OPT cre Print cross reference table
OPT 1 Print source listing from this

point
OPT nol Inhibit printing of source

listing from this point
OPT s Print symbol table
PAGE <xxx> Print subsequent statements on

top of next page

