68HC11 Notes

Version 1.1.1
Oct 30, 2006

Andrew J. Blauch
School of Engineering

GRANDVWALLEY
STATE UNIVERSITY

68HC11 Notes i

DISCLAIMER:
All software is provided “as is” and without any express or implied warranties, including,
without limitation, the implied warranties of merchantability and fitness for a particular

purpose.

COMPATABILITY:
This software has been created and tested using the following development systems:

Compiler(s):
GCC 68HCI11 compiler version 2.2

Processor(s):
Motorola 68HC11 E1,E9 operating at 2 MHz E-clock

Evaluation Board(s):
Axiom Manufacturing CMM11E1-EVBU
Axiom Manufacturing CME11E9-EVBU

Simulators(s):
68HCI11 EVBU Simulator Version 0.6. PySim11 Version 0.5
(developed by Andrew Sterian)

Copyright © 2005
School of Engineering
Grand Valley State University

68HC11 Notes 1i

Table of Contents
I HCI1 MICTOCONIIOLLET ...t 1
1.1 OVEIVICW ...ttt ettt sttt ettt ettt e bt et satesbe et e sbeebeenees 1
1.2 AV (S 1010) LY -1 PSP 1
2 Communication between PC and EVBUccoociiiiiiiiiiiiiiiceceee e 6
2.1 OVETVIBW ...ttt ettt ettt et s bt e bt e s at e et esae e e bt e s ae e et e e nabeenbeeneee 6
2.2 BlOCK DIQ@Iamcc.ooiiiiiieiiieiieie ettt et 7
3 GCC OBHCTT COMPILET....uiiieiiieeiieeeiie ettt et e e e et e e e te e e st e e eaeeeenseeenenes 8
3.1 OVEIVICW ..ttt ettt ettt et st e bt et sh e b et e sbeeaeeaees 8
3.2 Library FUNCHONScccviiieiiieeiie ettt eeaae e saneeeenee s 8
33 BUFFALOQ Library FUNCLIONSc.ccoiiiiiiieiieieeiieeie ettt 8
34 Sample SOUICE COAEoouviiiiiieeiiieeieecee e e e eaee e sree e 8
A T/O REEISEEIS. c..utieutieeiiieiie ettt ettt et ettt e et e et eseteeabeesaseenbeassbeenbeesaeeenseesnseenseas 9
4.1 OVETVIBW ...ttt ettt ettt et s et e bt e s ae e et esab e e bt e s bt e eabeenateenbeeneee 9
4.2 Memory Mapped [/O REZISIETcccueevuiieiieiiieiiecie ettt 9
5 Paralle] IO .o 11
5.1 OVEIVIEW ...ttt ettt ettt ettt et sb ettt sbe e bt et e ebtenbeetenaeens 11
5.2 OULPUL POTES....eiieeiieeee ettt ettt e e e e e e e e e enes 11
53 INPUL POTES ...t 11
54 Bi-directional POrtScoccooiiiiiiiiiiiiiiie e 12
6 /O Register C DefiNitioNS.......cccueeruiiiiiieniieeiieniie ettt et ste et siee et ieeebee e 13
6.1 OVETVIEW ...ttt ettt st e b e st sbt e st e bt e s bt e e bt e saeesbeesaneens 13
6.2 RegISter DEfINESccuiiiiieiieiieeiee e 13
6.3 ST e T o) g BT 1o USSR 13
6.4 Bit DEINeS..c..ooiiiiiiiiiieiec e 14
6.5 Bt USAZE .uviieiiiieeiee ettt et e e e e e ae e e ennes 14
7 Clocks and COUNLETS.c...eotiiiriiriieieiierit ettt sttt sttt et et 15
7.1 OVETVIEW ...ttt ettt et e b e sttt st e bt e s ab e e bt e s e e ebeesaneens 15
T2 CLOCKS ittt ettt sttt 15
7.3 Free Running Clock and COuNter...........ccccuveeiiieeiiiieeniieeciee e 16
7.3.1 OVEIVIEW ..ttt ettt ettt sttt st b et sbeesbeeaesaeen 16
7.3.2 Sample Source Codecvvvviiiiiiiieiiieeciieeree e 17
7.4 Real-Time Interrupt ClOCKccooviiiiiiiiiiiiiee e 18
7.5 Software Timing MeasuremMentscccveeeeveeeriieenieeerieeerreeeireesneeesreeesneens 19
7.5.1 Example — Measuring a Pulse Width...........coccooiiiiiiiiiiniiie 20
7.5.2 Example — Generating a Pulse Widthccccccoeviiiiniiiiniiieeen 22
8 Events and Flags........ccooiiiiiiiiiieieee e 24
8.1 OVETVIEW ...ttt ettt et e b e sttt e st e bt e sate e bt esaeesbeenaneens 24
8.2 Polling TEChNIQUEooueiiiriiiiiiiiiiceeete e 25
8.2.1 OVETVIEW ...ttt ettt ettt ettt sbt e st e bt sbeenaneeas 25
8.2.2 Sample Source Codecoeiuiriiniiniiiiiiieeteeee e 25
8.3 Interrupt TEChNIQUEeeiiieiiecieeeeceeee et 26
8.3.1 OVETVICW ...iiieiiieeeiee ettt eite e et e esiveeesibee e taeaetseeesseeessseessseessseeesssaeensseeanns 26

83.2 Sample Source Codeooviiiiiiriieeiieieeie ettt e 26

68HC11 Notes 11l

833 TIMINOLOZY ...veeneieeiiieiie ettt ettt esaneens 27
8.3.4 Sequence of OPErationcceeecvieeeireeiiienieeriee et e eveeeaeeesaee e 29

O TIMET OVEITIOW ...ttt sttt sttt s 30
9.1 OVETVIEW ...ttt ettt ettt ettt et et e st e bt e s st e e bt e sab e e bt e saeeabeesaeeans 30
9.2 Sample SoUIrce Codeeoviiiiiiiiieiiecie et ens 30
10 Real-Time INTEITUPL.......eeeiiiieeiieeeiee e eae e e e e enee e 31
LO.T OVEIVIEW ettt sttt sttt sttt et sbe e 31
10.2 Sample SoUrce COdeocouiiiiiiieeiiieeie e e e s 31
11 OULPUL COMPATES......eeeurrieeiieeeiiieeite ettt esieeesteeesbeeesiteeeiaeesbteesbteesbeeesbeeesaneeens 32
L1.T OVEIVIEW ettt ettt ettt et ettt s e et esae e e b e naee 32
11.2 Output CompPare 1ccceeeeiiiiiiiieieeeieeee et 33
I1.3 Output COMPATES 2...5. ettt ettt e e e e e e s ee s eeaaeeeenes 33
T1.4 EXAMPLES ..ioiiiiiieiiieiieiee ettt ettt sttt et et e st e e beessaeenseesneeenseennns 34
11.4.1 Generating a Pulse Width (Output Compare 1)cccceeeeveeevveencreeennnnn. 34
11.4.2 Generating a Pulse Width (Output Compare 2)cceecvvevverieenienneenen. 35
11.4.3 Generating a Pulse Width (Output Compare 1 and 2)cccccveevvveennnenn. 36
11.4.4 Generating a PWM Signal (Output Compare 1 and 2)ccccccceevveeeennnne 37

12 INPUL CAPLUTES ..ottt ettt tee e ae e e st eeeaaeeesaeesnneeesnneeens 38
I2.1 OVEIVIEW ettt ettt ettt sttt ettt s b et e e b enee 38
12.2 Example — Measuring a Pulse Width............cccoeiiiiiiiiiiniiiece 39
13 Analog-to-Digital CONVETSION.........eeriiiiiiiriieeiiesiie ettt ettt eeees 40
I3.1 OVEIVIEW ettt ettt ettt a e et sht e et e s bt e naeeenbeenaee 40
13.2 CONTIUIATION ...eiiniiiiiiieiieeiieee ettt ettt ettt e ebe et e saaeenbeeeees 41
14 Serial Communication Interface (SCI).......cccoveeiiiiiriiieeiiieeieeeee e 42
T4 1 OVEIVIEW ettt b e sttt e b 42
14.2 Baud Ratecooiiiiiiiiie e e 43
14.3 Transmit/Receive Data.........ccccoevuiiiiiiiiiiiiieiieeeee e 44
15 Pulse AcCUMUIALOTcc..oiiiiiiii s 45
I5.1 OVEIVIEW .ottt sttt ettt sttt e sbe e 45
152 CONTIGUIALION ...veiiiiieiiiieeiiee ettt tee et e e eaeeeseteeetbeeeaaeeensneesnsaeesnseeennnes 45
15.3 Event Counting MOcoccuiiiiiniiiiieie ettt 46
154 Gated Time Accumulation Mode..........cooviviriieeniiieniiecee e 46
16 INterruPt REQUESES ...eeeiiiiiiiiiiiie et 47
Appendix A: Sample Source Codecuvieiiiriiiiiiieeie e 48

Appendix B: Sample Programming Problems...........ccoceeviiiiiniininiinnninicnccicnens 65

68HC11 Notes v

List of Figures

Figure 1: 68HCITEO MemOTY Mapooviiiieiiieeiiieeiieeciie ettt e 2
Figure 2: CMEI11E9-EVBU Memory Map........ccccooviiriieiieniieiieeieeee e 3
Figure 3: 68HCITE] MemOTY Mapooeiuiiiiiiieeiieeeieecee ettt e 4
Figure 4: CMMI11E1-EVBU MemoOry Map.......ccccoevieriieiienieeiieeie et 5
Figure 5: Block Diagram for Communication between PC and EVBUccccc......... 7
Figure 6: Block Diagram for Parallel I/O Latchesc..ccoceeveriiniriiinienieiicnieceieee 11
Figure 7: Flow Chart for Polling Techniquecoccvveeiiiieriieeiiie e 25
Figure 8: Flow Chart for Interrupt Technique............cooceeveiiiiiieiiiinieeiieeeeeee e 26
Figure 9: Interrupt Vector EXampleoccuvieiiiiiiiiiiiieceee et 27
Figure 10: Interrupt Sequence of OPeration............ccceeveeeuierieeiiienieeieenie e eeeeiee e 29
List of Tables

Table 1: /O Re@ISters SUMMATYccccvieviiiiieiieeriieerieeesieeerteeesereeeareeeereesaeeesaeeesseeens 10

Table 2: Interrupt VECtor SUMMATYooouiiiiiiiiieeiieeiiesie ettt ettt seee e eeee e 28

68HC11 Notes 1

1 HCI11 Microcontroller

1.1 Overview

Essential components packaged onto one chip
o CPU (Motorola HC11)
o Memory (internal)
o I/O Peripherals (digital inputs/outputs, timers, etc)
I/O Ports
o External I/O signals grouped into 8-bit ports
o There are five I/O ports (PORTA through PORTE)
o Each port can be used as digital inputs/outputs
o Each port also has additional functionality associated with it
= PORTA — programmable timers
= PORTD - serial interface
= PORTE — analog-to-digital converter
= PORTB/PORTC — expanded mode (address and data bus)
There are different chip versions of the 68HC11
o All based on the Motorola HC11 microprocessor
o Transparent operation of I/O ports and registers
o Versions vary in amount and type of memory and certain I/O features
There are four operating modes
o Operating mode determined by MODA/MODB pins on power-up
= Single chip mode — All I/O ports available, external memory not
available
= Expanded chip mode — Not all I/O ports available, external memory
available
= Test modes — Used for factory testing and software installation
The EVBU is an evaluation board with the microcontroller, serial hardware, external
memory, and connectors. The EVBU provides an platform for quick development and
testing of applications microcontroller applications

1.2 Memory Maps

All hardware accessed by software via addresses
Each hardware devices is mapped to a certain range of addresses
Available hardware devices
o Internal memory
o External memory
o /O registers
Additional hardware devices can be connected and mapped to the microcontroller
using address decoding.

68HC11 Notes

$0000
$O01FF
$0200
SOFFF

$1000

$103F
$1040

$SB5SFF
$B600

$SBTFF
$B800

SCFFF
$D000

SFFFF

User Data Space
(54- Bytes)

Stack Space
(21+ Bytes)

Monitor Variable Space
(121 Bytes)

Internal RAM
(512 Bytes)

*Interrupt Vector Table
(60 Bytes)

Not Used

User Program Space
(256 Bytes)

I/0 Registers
(64 Bytes)

Not Used

See I/O Register Map
(64 Bytes)

Internal EEPROM
(512 Bytes)

User Program Space
(512 Bytes)

Not Used

Internal EPROM
(12K Bytes)

Monitor Program
(= 12 k Bytes)

Interrupt Vector Table
(64 Bytes)

Figure 1: 68HC11E9 Memory Map

$0000

$0035
$0036

$004A
$004B

$00C3
$00c4

$O00FF
$0100

$O01FF

$1000

$103F

$B600

SBTFF

$D000

SFFBF
SFFCO

SFFFF

==

68HC11 Notes

$0000
$01FF
$0200
$OFFF

$1000

$103F
$1040

$B5FF
$B600

$BTFF
$B800
$CFFF

$D000

SFFFF

68HC11E9 Mapping

Internal RAM $0000

(512 Bytes)

Not Used

I/0 Registers

(64 Bytes)

Not Used
$TFFF
$8000

Internal EEPROM

(512 Bytes)

Not Used

Internal EPROM

(12 k Bytes) $DFFF
$SE000
SFFFF

CME11E9 Mapping

External RAM
(32 k Bytes)

External ROM
(8 k Bytes)
Not used

$0000
$01FF
$0200
$0FFF

$1000

$103F
$1040

$TFFF
$8000

$B5FF
$B600
$BTFF
$B800

$CFFF
$D000

SFFFF

Figure 2: CME11E9-EVBU Memory Map

Overall Mapping

Internal RAM

External RAM

I/0 Registers

External RAM

Not Used

Internal EEPROM
(512 Bytes)

Not Used

Internal EPROM
(12 k Bytes)

68HC11 Notes

$0000
$O01FF
$0200
SOFFF

$1000

$103F
$1040

$SB5SFF
$B600

$SBTFF
$B800

SFFFF

Internal RAM
(512 Bytes)

Not Used

I/0 Registers
(64 Bytes)

Not Used

Internal EEPROM
(512 Bytes)

Not Used

User Data Space
(54- Bytes)

Stack Space
(21+ Bytes)

Monitor Variable Space
(121 Bytes)

*Interrupt Vector Table
(60 Bytes)

User Program Space
(256 Bytes)

See I/O Register Map
(64 Bytes)

User Program Space
(512 Bytes)

Figure 3: 68HC11E1 Memory Map

$0000

$0035
$0036

$004A
$004B

$00cC3
$00c4

$O0FF
$0100

$O01FF

$1000

$103F

$B600

SBTFF

==

68HC11 Notes

$0000
$01FF
$0200
$OFFF

$1000

$103F
$1040

$B5FF
$B600

$B7FF
$B800

SFFFF

68HC11E1 Mapping

Internal RAM $0000

(512 Bytes)

Not Used

I/0 Registers

(64 Bytes)

Not Used
$TFFF
$8000

Internal EEPROM

(512 Bytes)

Not Used
SDFFF
$SE000
SFFFF

CMM11E1 Mapping

External RAM
(32 k Bytes)

External EEPROM
(32 k Bytes)

Monitor Program

$0000
$01FF
$0200
$0FFF

$1000

$103F
$1040

$TFFF
$8000

$B5FF
$B600

$SB7FF
$B800

$DFFF
$E000

SFFFF

Figure 4: CMM11E1-EVBU Memory Map

Overall Mapping

Internal RAM

External RAM

I/0 Registers

External RAM

External EEPROM

Internal EEPROM
(512 Bytes)

External EEPROM

Monitor Program

68HC11 Notes 6

2 Communication between PC and EVBU

2.1 Overview

e Monitor program
o Stored in permanent memory
o Provides easy access to memory/hardware on the microcontroller
o The monitor program on the EVBU is called BUFFALO
o A special Wallace monitor program was written for the Wallace robots.
= The Wallace monitor program allows easy access to the I/O on the
robot
= BUFFALO provides more general access to the I/O on the 68HC11
e Standard Communication
o On the PC, the standard input device is the keyboard and the standard output
device is the monitor.
The serial port on the EVBU is used as the standard input and output device
The monitor programs use the standard I/O for communicating
The PC must be connected to the EVBU via a serial cable
A terminal emulation program (such as HyperTerminal) can be used on the
PC to transmit and receive data across the serial port
o The communication protocols on the PC and EVBU must match
= 9600 baud, 8 data bits, no parity, 1 stop bit
e Loading a program
o The executable code must be copied from the host computer (PC) to the
memory on the target computer (microcontroller/EVBU)
o The S19 file format is not true executable code
= The S19 file is in a special format for transmitting to BUFFALO
= BUFFALDO translates the S19 format into executable code and stores it
in the appropriate memory locations
o Toload an S19 file:
= Use the LOAD T command to prepare BUFFALO to receive an S19
file
= Transmit the S19 as a text file
e Executing a program
o The 68HCI11 is a serial processor (it can only execute one program at a time)
o To execute a program
= Use the GO 1040 command to transfer program execution from
BUFFALO to the beginning of your program.
= When your program ends, program execution will automatically to
transferred back to BUFFALO

o O O O

68HC11 Notes

2.2 Block Diagram

HC11
Executable File
*S19
(text)

y

Serial Communication Program

HYPERTERMINAL.EXE
(windows)
A
A 4
Windows 98/NT/XP BUFFALO Your Program
(operating system) (monitor program) >
A

Software (memory)

Hardware

PC EVBU
486/Pentium, 166/233 MHz, etc. 68HC11, 2 MHz, etc.

A
A\ 4

Serial Cable

Figure S: Block Diagram for Communication between PC and EVBU

68HC11 Notes 8

3 Gee 68HC11 Compiler

3.1 Overview

e Gce 68HC11 compiler used to compile C code for the 68HC11 microcontroller.

e Itisa 16 bit compiler (an integer/word is 16 bits)

e The 68HCI11 is not a floating-point processor. The compiler can handle floating-point
math but the code becomes large and time consuming. Do not use floating-point
variables or math.

e Use the GCC 68HC11 DOS Prompt and gec6811 batch file to compile programs.
e Compiler creates an S19 file.

gcc6811 test.c

e Compiler and linker options pre-configured in gec6811 batch file.
e Default starting address for programs is 1040.

3.2 Library Functions

e You cannot use most of the C library functions you are familiar with. The functions
are either not available, require too much memory, and/or consume too much time.

e Unable to use standard I/O functions (printf, scanf, etc.).

e All library functions that you use become part of your program and must be
downloaded into memory on the EVBU.

3.3 BUFFALO Library Functions

BUFFALO program organized into subroutines (modular programming)

BUFFALDO already stored in ROM on the EVBU

You can access BUFFALO subroutines if you know the address and parameter format
Use Buffalo library functions to take advantage of BUFFALO subroutines

Refer to BUFFALO Library Documentation (include buffalo.h header file)

3.4 Sample Source Code

standard.c (DOS)

buffalo.c (CMM11El, CME11lE9, simulator)
int.c (CMM11El, CME11lE9, simulator)
float.c (CMM11El, CME11lE9, simulator)

68HC11 Notes

4 1/0 Registers

4.1 Overview

The I/0 registers are used to control the I/O features on the 68HCI11.
Each register has a specific purpose.

The bits in some registers also have a specific purpose.

Some registers can be modified by the user while others cannot.

The registers are accessed via memory mapping.

4.2 Memory Mapped I/O Register

e The I/O registers on the 68HC11 are mapped to specific memory locations.
e Read memory location to determine register value.
e Write to memory location to change register value (if it can be changed).

68HC11 Notes 10
Table 1: I/O Registers Summary

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit O
1000 PORTA PAT7 PAG6 PAS PA4 PA3 PA2 PAl PAO
1001 reserved
1002 PIOC
1003 PORTC PC7 PC6 PC5 PC4 PC3 PC2 PC1 PCO
1004 PORTB PB7 PB6 PBS PB4 PB3 PB2 PB1 PBO
1005 PORTCL
1006 reserved
1007 DDRC DDC7 DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDCO
1008 PORTD 0 0 PD5 PD4 PD3 PD2 PD1 PDO
1009 DDRD 0 0 DDD5 DDD4 DDD3 DDD2 DDD1 DDDO
100A PORTE PE7 PE6 PES PE4 PE3 PE2 PE1 PEO
100B CFORC
100C OC1M OC1M7 OC1M6 OC1M5 OC1M4 OC1M3 0 0 0
100D OC1D 0C1D7 OC1D6 0OC1D5 0C1D4 0C1D3 0 0 0
100E TCNT (Hi) 15 14 13 12 11 10 9 8
100F TCNT (Lo) 7 6 5 4 3 2 1 0
1010 TICL (Hi) 15 14 13 12 11 10 9 8
1011 TIC1 (Lo) 7 6 5 4 3 2 1 0
1012 TIC2 (Hi) 15 14 13 12 11 10 9 8
1013 TIC2 (Lo) 7 6 5 4 3 2 1 0
1014 TIC3(Hi) 15 14 13 12 11 10 9 8
1015 TIC3 (Lo) 7 6 5 4 3 2 1 0
1016 TOCL (Hi) 15 14 13 12 11 10 9 8
1017 TOC1 (Lo) 7 6 5 4 3 2 1 0
1018 TOC2 (Hi) 15 14 13 12 11 10 9 8
1019 TOC2 (Lo) 7 6 5 4 3 2 1 0
101A TOC3 (Hi) 15 14 13 12 11 10 9 8
101B TOC3 (Lo) 7 6 5 4 3 2 1 0
101C TOC4 (Hi) 15 14 13 12 11 10 9 8
101D TOC4 (Lo) 7 6 5 4 3 2 1 0
101E TI405 (Hi) 15 14 13 12 11 10 9 8
101F TI405 (Lo) 7 6 5 4 3 2 1 0
1020 TCTL1 OoM2 OL2 OM3 OL3 OM4 OL4 OM5 OL5
1021 TCTL2 EDG4B EDG4A EDG1B EDG1A EDG2B EDG2A EDG3B EDG3A
1022 TMSK1 OClI 0oC21 OC31 0OC41I T4051 IC1I ICc21 IC3I
1023 TFLG1 OC1F OC2F OC3F OC4F TI405F IC1F IC2F IC3F
1024 TMSK2 TOI RTIT PAOVI PATIT 0 0 PR1 PRO
1025 TFLG2 TOF RTIF PAOVF PAIF 0 0 0 0
1026 PACTL DDRA7 PAEN PAMOD PEDGE DDRA3 T405 RTR1 RTRO
1027 PACNT 7 6 5 4 3 2 1 0
1028 SPCR
1029 SPSR
102A SPDR
102B BAUD TCLR 0 SCP1 SCPO RCKB SCR2 SCR1 SCRO
102C SCCR1 R8 T8 0 M WAKE 0 0 0
102D SCCR2 TIE TCIE RIE ILIE TE RE RWU SBK
102E SCSR TDRE TC RDRF IDLE OR NF FE 0
102F SCDR R7/T7 R6/T6 R5/T5 R4/T4 R3/T3 R2/T2 R1/T1 RO/TO
1030 ADCTL CCF 0 SCAN MULT CD CcC CB CA
1031 ADR1 7 6 5 4 3 2 1 0
1032 ADR2 7 6 5 4 3 2 1 0
1033 ADR3 7 6 5 4 3 2 1 0
1034 ADR4 7 6 5 4 3 2 1 0
1035 BPROT
1036 reserved
1037 reserved
1038 reserved
1039 OPTION ADPU CSEL IRQE DLY CME 0 CR1 CRO
103A COPRST
103B PPROG
103C HPRIO
103D INIT
103E TEST1
103F CONFIG

68HC11 Notes 11

5 Parallel I/O

5.1 Overview

Access digital inputs and outputs via corresponding PORT registers.

Each signal/pin has corresponding bit in PORT register.

Determine current input and output signal values by reading PORT registers.
Assign output signal values by writing to PORT registers.

You cannot change the value of an input signal.

Ou}put Iniut Bi-Direictional
Data
Direction
Latch Latch Latch
T v T v T v
Write Read Write Read Write Read

Figure 6: Block Diagram for Parallel I/O Latches

5.2 Output Ports

e Write to I/O register to assign output values.
e Read from I/O register to determine output values.

Port B Summary (single chip mode)
Address Register Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bitl Bit0
1004 PORTB | PB7 | PB6 | PB5 | PB4 | PB3 | PB2 | PBI | PBO |
! ! ! ! ! ! ! !

5.3 Input Ports

e Read from I/O register to determine input values.
e Writing to I/O register has no effect.

Port E Summary
Address Register Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bitl Bit0
100A PORTE | PE7 | PE6 | PE5S | PE4 | PE3 | PE2 | PE1 | PEO |
1 1 1 1 1 1 1 1

68HC11 Notes 12

5.4 Bi-directional Ports

e Configure direction using data direction (DD) bits. Reset (default) value is 0
(input).
0 = input
1 = output
e Data direction bits grouped into data direction registers (DDR). The DD bits
correspond with the bits/pins they control.
e Read from I/O register to determine pin values.
e Write to I/O register to set output pins (input pins are not effected).

Port C Summary (single chip mode)
Address Register Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bitl Bit0

1007 DDRC DDC7 | DDC6 | DDCS5 | DDC4 | DDC3 | DDC2 | DDC1 | DDCO

1003 PORTC | PC7 PC6 PC5 PC4 PC3 PC2 PClI PCO

! ! ! ! ! ! ! !

Port D Summary
Address Register Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bitl Bit 0

1009 DDRD 0 0 DDDS5 | DDD4 | DDD3 | DDD2 | DDDI1 | DDDO

1008 PORTD 0 0 PD5 PD4 PD3 PD2 PD1 PDO

! ! ! ! ! !

Port A Summary
Address Register Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bitl Bit0

1026 PACTL | DDRA7 - - - DDRA3 | 14/05 - -
1000 PORTA PA7 PA6 | PAS | PA4 | PA3* PA2 | PA1 | PAO
! i l l ! T T T

*PA3 has two control pins. If the 14/0O5 bit is equal to 0 (default) the PA3 pin is
configured as an output. The OMS5 and OLS5 bits control the output state. If OCS is
disabled (OMS5 = 0 and OLS5 = 0) or if PA3 is configured for input capture (14/05 = 1)
then the DDA3 bit determines the direction of the PA3 pin.

68HC11 Notes 13

6 1/0 Register C Definitions

6.1 Overview
e The hci1e9.h header file contains the definitions for the 68HC11 1/O registers.

#include <hclle9.h>

6.2 Register Defines

e I/O registers are defined as a de-referenced pointer to their corresponding address.
¢ You do not need to place this in your source code (defined in hc11e9.h header file)

#define PORTA *(volatile unsigned char *)0x1000
#define PORTB * (unsigned char *)0x1004

6.3 Register Usage

e Use I/O registers in your program like variables.

¢ You can use them in assignments, conditional statements, etc.

¢ You can always change the value of a variable. They do not change unless you
change them.

e You cannot always change the value of an I/O register. Some of them can change on
their own.

int X, Vi

% — PORTB: Variables x and y will always be the same

y = PORTB; Bits (pins) PB7, PB6, PBS5, PB2, PBO set to a 1 (high)
PORTB = OxE5; Bits (pins) PB4, PB3, PB1 set to a zero (low)

if (PORTB == 0x40) Checks if PB6 = 1 and all other pins = 0

x = PORTE;))

y = PORTE; Variables x and y may be different

PORTE = 0xE5; Has no effect on bits (pins)

if (PORTE == 0x40) Checks if PE6 = 1 and all other pins = 0

68HC11 Notes 14

6.4 Bit Defines

e I/O register bits are defined as the corresponding bit mask.

e I/O register bit defines are not associated with specific registers (all bit 7 bits defined
the same). You must ensure correct bit/register combination usage.

e Use appropriate bit defines instead of actual mask to make code easier to understand.

e You do not need to place this in your source code (defined in hc11e9.h header file)

#define bit7 0x80
#define bit6 0x40

#define PB7 bit7
#define PB6 bit6
#define PE7 bit7
#define PEG6 bit6

6.5 Bit Usage

e You cannot access bits directly. You must go through the I/O register.

e The bit defines are not variables. They do not represent the value of the bit.

e The actual bit values are in the I/O register. Use the bit defines and bit wise
operations to access specific bits in the I/O register.

/* Invalid C statements */
PB7 = 1; /* Same as 0x80 = 1 *
PB7 = 0; /* Same as 0x80 =

I
o
~

/* Modify entire register */

PORTB = 0x04; /* Cryptic */
PORTB = PB2; /* More understandable */
PORTB = (PB3 | PB4); /* Combine masks */

/* Set specific bits to 1, leave other bits alone */

PORTB = PORTB | PB3; /* PB3 =1 */
PORTB |= PB3; /* Shortcut notation */
PORTB |= (PB3 | PB4); /* PB3 = 1 , PB4 = 1 */

/* Set specific bits to 0, leave other bits alone */

PORTB = PORTB & ~PB3; /* PB3 = 0 */
PORTB &= ~PB3; /* Shortcut notation */
PORTB &= ~ (PB3 | PB4); /* PB3 = 0 , PB4 = 0 */

/* Check specific bits */

if ((PORTB & PB3) ==) /* PB3 = 0 2 */
if ((PORTB & PB3) == PB3) /* PB3 =1 2 */
IMPORTANT NOTE:

e When referring to bits (pins) outside the context of C code, it is valid to say PB7 = 1.
e When referring to bits in the context of C code, it is invalid to say pB7=1.

68HC11 Notes 15

7 Clocks and Counters

7.1 Overview

A clock is a periodic signal used to synchronize events.
o The CSU requires a clock to synchronize the execution of instructions.
o Clocks are often used in conjunction with hardware counters.
A hardware counter increments (counts) on the rising edge of the clock.
o Counters have a limited range based on the number of bits in the counter.
o When the counter goes from all ones to all zeros it is said to overflow.
o Specific counters are connected to different clocks, resulting in different
counting rates.
The timer functions and other I/O features require clocks and counters to perform
their operations.

7.2 Clocks

EXTAL
o Input to 68HC11. Supplied by external circuitry.
XTAL
o Output from the 68HC11 for use by external devices.
o Highest internal clock frequency. Use for synchronization of instructions.
o The stop disable bit is used to put the 68HC11 to sleep (turn off XTAL).
E Clock
o Internal 68HCI11 clock.
o Down-sampled XTAL clock by four (1/4 frequency).
o Base clock for timer functions. A machine cycle, or tick, is equal to one
period of the E clock.
o Other clocks on 68HC11 based on E-clock.
EVBU Board
o External 8 MHz crystal oscillator
= EXTAL=8 MHz
= XTAL =8 MHz
= E Clock =2 MHz (1 tick = 0.5 usec)

68HC11 Notes 16

7.3 Free Running Clock and Counter

7.3.1 Overview

The free running clock is based off of the E clock.

Configuration bits PR1 and PRO are timed write-once bits (you can not change them).
The free running counter (TCNT) is a 16 bit I/O register.

The timer functions are based on the free running clock/counter.

E Clock J PR1, PRO | Free Running Clock
e ———»
(TMSK2)

Free Running Clock and Counter (TCNT)
PRI PRO |Scale Frequency (kHz) Period (us) Overflow (ms)

0 0 1 2000 0.5 32.768

0 1 4 500 2.0 131.072

1 0 8 250 4.0 262.144

1 1 16 125 8.0 524.288

Free Running Counter I/O Registers

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit O
TCNT (H1i) 15 14 13 12 11 10 9 8
TCNT (Lo) 7 6 5 4 3 2 1 0
TMSK2 - \ - \ - \ - \ - \ - | PRL | PRO

68HC11 Notes

17

FFFF — 0000

Free
Running
Clock

TCNT SA2E SA2F 5A30

7.3.2 Sample Source Code

tcnt.c (CMM11El, CME11E9, simulator)
tcntdelay.c (CMM11E1l, CME11E9)

68HC11 Notes 18

7.4 Real-Time Interrupt Clock

e The real-time clock is based off of the E clock.

e Configuration bits RTR1 and RTRO can be modified.

e The period of the real-time clock is on the order of milliseconds, which corresponds
to typical update rates for real-time applications.

E Clock { RTR1, RTRO | Real-Time Clock
(PACTL) >

A 4

Real-Time Interrupt (RTI) Clock
RTR1 RTRO {Scale Period (ms)

0 0 213 4.096
0 1 21 8.192
1 0 213 16.384
1 1 216 32.768

Real-Time Clock I/0 Registers

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0O

PACTL - - \ - \ - \ - \ - | RTRL | RTRO |

68HC11 Notes 19

7.5 Software Timing Measurements

e The free running counter can be used to perform timing measurements.
e The accuracy of the timing measurements is limited by the period of the free running
clock and the size of the free running counter.
o Smallest measurable time interval is 1 clock period (0.5 psec).
o Largest measurable time interval is 1 counter cycle (32.768 msec).
o Only relative time can be measured (i.e. second hand only).
e In addition, there are limitations and considerations that need to be taken into account
depending on the method of measurement.
o Software always requires time to execute.
o All assembly instructions take at least 1 tick (0.5 psec) to execute. Most
assembly instructions take several ticks or more.
o C statements typically correspond to several assembly instructions.
o Hardware is capable of performing operations faster than software.

68HC11 Notes 20
7.5.1 Example — Measuring a Pulse Width
e Objective
o Measure the pulse width of the signal shown below
e Strategy
o Connect signal to an input pin (pick PA2).
o Wait for rising edge. Record time.
o Wait for falling edge. Record time.
o Take the difference to calculate pulse width.
e Sample Source Code
tcntmpw.c (CME11E9, simulator)
unsigned start, stop, width; /* Stop watch variables */
while ((PORTA & PA2) == PA2); /* Ensure start during low part */
while ((PORTA & PA2) == 0); /* Wait until PA2 high */
start = TCNT; /* Record start time */
while ((PORTA & PA2) == PA2); /* Wait until PA2 low */
stop = TCNT; /* Record stop time */
width = stop - start; /* Calculate pulse width(ticks) */

68HC11 Notes 21

Observations
o Time is always positive (unsigned), relative, and in ticks.

o Delay between detection of edge and recording of time.

Actual duration

A A

\ 4

< Measured duration N
Record Record
start stop

o Unsigned math can handle one counter overflow.
o Does not detect wrap around times.

Start = E000 Stop = 1000 Start = 1000

Stop = D000
Stop = 4000

Start = A000

o Actual pulse width could be 3000, 13000, 23000, ...

Questions?
o What is the minimum pulse width that can be measured using this method?

o What is the maximum pulse width that can be measured using this method?

68HC11 Notes

22

7.5.2 Example — Generating a Pulse Width

Objective

o Generate the signal shown below.

Strategy

_— Pulse Width —

o Connect signal to an output pin (pick PA6).

o O O O

Set signal high.
Record time.

Wait for pulse width duration to elapse.
Set signal low.

Sample Source Code
tcntgpw.c (CME11E9,

unsigned start,

width

PORTA
start
while
PORTA

|
(
&=

simulator)
width;
100;
PAG;
TCNT;
(TCNT-start) < width);

~PAG;

/*
/*

/*
/*
/*
/*

Stop watch variables */
50 usec pulse width */

Set PA6 high */
Record start time */
Wait */

Set PA6 low */

68HC11 Notes

23

Observations

o Delay between setting signal high and recording of start time.
o Delay between end of while loop and setting signal low.

Actual duration

A\ 4

A

—

A

Set signal <«—Desired” duration Set signal
high Record End of low
start while loop

o Cannot use equality comparisons.
o Must use proper conditional statement in order to handle counter overflow.

start = 2000, width = 3000, stop = start + width = 5000

TCNT duration = TCNT-start TCNT <stop duration < width

4000 2000 True True

6000 4000 False False

1000 F00O0 True False

TCNT < stop ; |
0000 2000 5000 FFFF
start stop
duration < width
0000 2000 5000 FFFF
start stop
start = E000, width = 3000, stop = start + width = 1000

TCNT duration = TCNT-start TCNT <stop duration < width

F00O0 1000 False True
0000 2000 True True
2000 4000 False False

TCNT < stop I
0000 1000 E000 FFFF
stop start
duration < width | | |
0000 1000 E000 FFFF

stop start

Questions?

o What is the minimum pulse duration that can be generated using this method?
o What is the maximum pulse duration that can be generated using this method?

68HC11 Notes 24

8 Events and Flags

8.1 Overview

How does software and hardware “communicate” with each other?
o Software “communicates” with hardware by modifying I/O registers.
o Hardware “communicates” with software by modifying I/O registers.
= Software must check I/O registers to “notice” information.
= Hardware sets a flag bit to indicate an event occurred.
An event occurs whenever specific conditions are met.
o Every event has its own set of conditions.
= Alarm clock event occurs whenever the actual time matches the preset
alarm time.
= Light turns on when switch is thrown.
o Event conditions are checked by hardware.
= Conditions can be checked “instantaneously”.
= [t does not take up processor time.
A flag is a bit located in an I/O register that indicates whether or not an event has
occurred.
o The purpose of a flag bit is to inform “software” that an event has occurred.
It is the responsibility of the “software” to check the flag bit.
Every event has its own flag bit.
A flag can only be set to a 1 by hardware. Software cannot set a flag.
Most flags can be cleared (set to a 0) by software by writing a 1 to the flag bit.
Flags are cleared on RESET.
o Flag bits are denoted by <event name>F (i.e. the RTI flag is RTIF).
There are two methods for responding to events: polling technique and interrupt
technique.
o Polling technique — program checks flags to determine if event occurs
o Interrupt technique — hardware generates an interrupt whenever event occurs

o O O O O

68HC11 Notes

25

8.2 Polling

Technique

8.2.1 Overview

e Software periodically checks to see if a flag is set.

o Good — Program controls when the flag is checked.
o Bad — Can be a significant delay between event and when software checks the
flag.

Start
Program

v
Initialization

Set Event items

Disable Event interrupts

Clear Event flag
y
Event
Flag set? Y »| Clear Event flag
N y
P Do Event stuff
o000

v
Do Polling Loop stuff

Figure 7: Flow Chart for Polling Technique

8.2.2 Sample Source Code

tofdelay.c (CMM11El, CME11lE9)

tof.c

(CMM11E1, CME1l1lE9, simulator)

68HC11 Notes 26

8.3 Interrupt Technique

8.3.1 Overview

e Hardware will interrupt the execution of the program when an event occurs.
e An interrupt service routine (ISR) associated with the event will automatically be

executed.
o ISRs differ from normal subroutines in how they are called and how they
return.
o An ISR cannot be called directly in the program.
e When the ISR is completed, the program will resume from where it was interrupted.
o Good — No need to waste time checking flags.
o Good — More robust/structured programming.
o Not so Bad — There is still a slight delay in software response.
o Bad - Too many interrupts cause the program to starve.
Start
Program
Start
v Event ISR
Initialization
Set Event items
Set Vector Table Event address v
Enable Event interrupts Clear Event flag
Enable Maskable interrupts
Clear Event flag
A 4
> Do Event stuff
LN J
y
A 4
Do Polling Loop stuff . RTI
o000 <

8.3.2

Figure 8: Flow Chart for Interrupt Technique

Sample Source Code

toi.c (CMM11El, CME11lE9, simulator)

68HC11 Notes 27

8.3.3 Terminology

e Synchronous / Asynchronous

@)

©)

Synchronous interrupts — current instruction is completed prior to executing
ISR. This is a recoverable interrupt.

Asynchronous interrupts — current instruction is aborted and ISR is executed
immediately. This is a non-recoverable interrupt.

e Maskable / Non-Maskable interrupts

@)
@)

Maskable interrupts — the interrupt can be disabled (masked).
Non-Maskable interrupts — the interrupt cannot be disabled (masked).
= The I bit in the CCR register is used to enable (0)/disable (1) “all”
maskable interrupt
= The X bit in the CCR register is used to enable (0)/disable (1) the
XIRQ interrupt
e Once enabled the XIRQ cannot be disable except by a RESET.
= There are additional individual enable bits for each maskable interrupt
(and some “non-maskable” interrupts.

e Priority

o

Determines the order in which multiple events/interrupts that occur at the
same time will be handled.

e Vectors

@)
@)
©)

A vector is an address that corresponds to a subroutine (points to a subroutine)
An interrupt vector (IV) contains the address of an ISR.

An interrupt vector table (IVT) contains a list of interrupt vectors. Each vector
in the table corresponds to a specific interrupt event. The IVT is located in
ROM.

A pseudo-interrupt vector (PIV) contains a jump statement to an ISR.

A pseudo-interrupt vector table (PIVT) contains a list of pseudo-interrupt
vectors. The PIVT is located in RAM to allow assignment of ISRs during the
development process.

The IVT 1s mapped to the PIVT on the EVBU.

Pseudo-Vector Table

$00c4
:gggg ZE Start of SWI ISR
$00F6 2° (IMP xxxx)
$00FF
Vector Table
$FFCO
$FFF6 00
$FFF7 F4 Extended address of SWI ISR (00F4)
$Fééé

Figure 9: Interrupt Vector Example

68HC11 Notes 28
Table 2: Interrupt Vector Summary
Vector Pseudo-Vector Source in order CCR Local Synchronous
Address Address of priority Mask Mask Bit
(2 bytes) (3 bytes) (low to high) Bit
FFD6 ooc4 Serial Communication I RIE Y
Interface (SCI) TIE
TCIE
ILIE
FFD8 00C7 Serial Peripheral Interface I SPIE Y
(SPI)
FFDA 00CA Pulse Accumulator Input I PAII Y
Edge
FFDC 00CD Pulse Accumulator I PAOVI Y
Overflow
FFDE 00DO0 Timer Overflow I TOI Y
FFEO 00D3 Timer Input Capture 4 / I 14/0C51 Y
Timer Output Compare 5
FFE2 00D6 Timer Output Compare 4 I 0C41 Y
FFE4 00D9 Timer Output Compare 3 I 0OC3I Y
FFEG6 00DC Timer Output Compare 2 I 0C21 Y
FFE8 00DF Timer Output Compare 1 I OCl11 Y
FFEA 00E2 Timer Input Capture 3 I IC31 Y
FFEC 00E5 Timer Input Capture 2 I 1C21 Y
FFEE 00E8 Timer Input Capture 1 I IC1I Y
FFFO 00EB Real-Time Interrupt I RTII Y
FFE2 00EE IRQ I Y
FFF4 00F1 XIRQ X Y
FFF6 00F4 Software Interrupt (SWI) Y
FFF8 00F7 Illegal Opcode
FFFA 00FA Computer Operating NOCOP
Properly (COP)
FFFC 00FD Clock Monitor CME
FFFE RESET (Bootloader Start)

68HC11 Notes 29

8.3.4 Sequence of Operation

e When a synchronous interrupt occurs the HW sets an interrupt flag.
e When the current instruction cycle is completed, the HW processes the interrupt.
o If multiple interrupts occurred, the interrupt with the highest priority is
processed first. The other interrupts will remain in a queue to be processed
later.
e The CPU registers are pushed onto the stack to be preserved.
e The I and X bits in the CCR register are set to prevent the ISR from being interrupted.
o If interrupts occurs during an ISR they will be placed in the queue.
e The corresponding IV is fetched from the IVT and placed in the PC (ISR starts
executing).
e The RTI instruction restores all the CPU registers to their pre-interrupted state.

Program Instructions

Push registers on stack

(PC,Y,X,A,B,CCR)
Set I & X bit in CCR
Fetch ISR address from
Event occurs Interrupt Vector Table
HW sets flag
ISR
Instructions
Complete current instruction T
Execute ISR
| | If event interrupt enabled
Continue with main program
[]
[]
— []
RTI
Pull registers off stack

Figure 10: Interrupt Sequence of Operation

68HC11 Notes

9 Timer Overflow

9.1 Overview

e Event occurs when the free running counter overflows.
e Periodic event.
e No external pins associated with event.
e Operates at same time scale as real time interrupt event.
FFFF — 0000
A
347D
9F2C
Timer Overflow Event
Flag Interrupt ~ Control Pins
Enable Registers
TOF TOI PR1, PRO None
(TFLG2) (TMSK2) (TMSK?2)
Timer Overflow I/O Registers
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit O
TMSK2 TOI - - - - - PR1 PRO
TFLG2 TOF - - - - - - -

9.2 Sample Source Code

tocntr.c (CMM11El, CME11lE9, simulator)

68HC11 Notes 31

10 Real-Time Interrupt

10.1 Overview

o Event occurs when the real time clock ticks.
e Periodic event.
e No external pins associated with event.

Real-time
clock]
Real-Time Interrupt Event
Flag Interrupt Control Pins
Enable Registers
RTIF RTII RTR1, RTRO None
(TFLG2) (TMSK2) (PACTL)
Real-Time Interrupt I/O Registers
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit O
TMSK2 - RTIT - - - - - -
TFLG2 - RTIF - - - - - -
PACTL - - - - - - RTR1 RTRO

10.2 Sample Source Code

rticntr.c (CMM11El, CME1l1lE9, simulator)

68HC11 Notes 32

11 Output Compares

11.1 Overview

e Event occurs when TCNT equals TOCx (Output Compares).
e Alarm clock type event.
e [External pin(s) associated with each event.
e Output pin(s) can be changed automatically when event occurs (Output Compares).
TCNT
TOCx .
TCNT=TOCx
Output Compare Events (1...5)
Flag Interrupt ~ Control Pins
Enable Registers
OCI1F OClI (OCIM,0C1D) OC1...0C5
(TFLG1) (TMSKI1) (TOC1) PA7...PA3
OCxF OCxI OMx,0Lx 0C2...0C5
(TFLG1) (TMSKI1) (TCTL1) PA6...PA3
(TOCx)
Output Compare 1/0O Registers
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0O
OC1M OoC1M7 OC1M6 OC1M5 0C1M4 OC1M3 0 0 0
OC1D 0OC1D7 OC1D6 OC1D5 0C1D4 0OC1D3 0 0 0
TOC1 (Hi) 15 14 13 12 11 10 9 8
TOC1 (Lo) 7 6 5 4 3 2 1 0
TOC2 (Hi) 15 14 13 12 11 10 9 8
TOC2 (Lo) 7 6 5 4 3 2 1 0
TOC3 (Hi) 15 14 13 12 11 10 9 8
TOC3 (Lo) 7 6 5 4 3 2 1 0
TOC4 (Hi) 15 14 13 12 11 10 9 8
TOC4 (Lo) 7 6 5 4 3 2 1 0
TI405 (Hi) 15 14 13 12 11 10 9 8
TI405 (Lo) 7 6 5 4 3 2 1 0
TCTL1 OM2 OL2 OM3 OL3 OoM4 OL4 OM5 OL5
TMSK1 OC1lI 0C21I OC3I 0OC41 I405T - - -
TFLG1 OC1F OC2F OC3F OC4F I405F - - -

68HC11 Notes

33

11.2 Output Compare 1

Event occurs when TCNT equals TOCI.

Five external pins associated with event (OC1...0OC5/PA7...PA3).
Pins to control are selected by OCIM (OC1 mask register).

The value of the controlled pins is determined by OC1D (OC1 data register).
One event (OC1) can control five pins. All change at the same time.

Output Compare 1 Control

OCIMy 1 = Enables control of pin PAy
(OC1M) 0 = Disables control of pin PAy

OC1Dy 1 =Set pin PAy high on OC1 event
(OC1D) 0= Set pin PAy low on OC1 event

Output Compare 1 I/O Registers

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
OC1M OoC1M7 OC1M6 OC1M5 OC1M4 OC1M3 0 0 0
OC1D 0OC1D7 OC1D6 OC1D5 0OC1D4 OC1D3 0 0 0

11.3 Output Compares 2...5

e Event occurs when TCNT equals TOCx.

¢ One external pin associated with each event (OC2/PA6, OC3/PAS, OC4/PA4,
OC5/PA3).

e Control and value determined by associated OM and OL bits.
e Each event can control one pin.

Output Compare 2...5 Control

OMx OLx Level

0 0 Disconnected (not controlled)
0 1 Toggle

1 0 Low

1 1 High

Output Compare 2...5 I/O Registers

Name

Bit 7

Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1

Bit 0O

TCTL1

OoM2

or2 | omM3 | o3 | omM4 [o4 [oM5

OL5

68HC11 Notes 34

11.4 Examples

11.4.1 Generating a Pulse Width (Output Compare 1)

Objective
o Generate the signal shown below.

_— Pulse Width —

Strategy
o Use Output Compare 1 event.
o Connect signal to an output pin controlled by OC1 (pick OC1/PA6).
o Algorithm
= Configure OC1/PA6 to go high on next event.
= (Clear OCI1 flag.
= Wait for OC1 event to occur.
= Configure OC1/PA6 to go low on next event.
= Setnew OCI1 event time.
= (Clear OCI1 flag.
= Wait for OC1 event to occur.
= Disable OC1 control.

Sample Source Code
ocpwl.c (CME11lE9, simulator)

Observations
o No delay between event time and signal change.
o Limited only by time required by software to establish the next event time.

A
Q4

Time to setun next TOC1

TOC1 TOC1
(1* event) (2" event)

A

Questions?
o What is the minimum pulse duration that can be generated using this method?
o What is the maximum pulse duration that can be generated using this method?

68HC11 Notes 35

11.4.2 Generating a Pulse Width (Output Compare 2)

e Objective
o Generate the signal shown below.

_— Pulse Width —

e Strategy
o Use Output Compare 2 event.
o Connect signal to an output pin controlled by OC2 (OC2/PA6).
o Algorithm
= Configure OC2/PA6 to toggle on event.
= Set PA6 low.
= (Clear OC2 flag.
= Wait for OC2 event to occur.
= Set new OC2 event time.
= (Clear OC2 flag.
= Wait for OC2 event to occur.
= Disable OC2 control.

e Sample Source Code
ocpw2.c (CME11lE9, simulator)

e Observations
o No delay between event time and signal change.
o Limited only by time required by software to establish the next event time
(shorter than previous example).

68HC11 Notes

36

11.4.3 Generating a Pulse Width (Output Compare 1 and 2)

e Objective
o Generate the signal shown below.

_— Pulse Width —

e Strategy
o Use Output Compare 1 and 2 events.
o Connect signal to an output pin controlled by OC1 and OC2 (OC2/PA6).
o Algorithm
= Configure OC1 to set signal high.
= Configure OC2 to set signal low.
= Set OC1 and OC2 times.
= (Clear OC1 and OC2 flags.
= Wait for OC2 event to occur.
= Disable OC1 and OC2 control.

e Sample Source Code
ocpwl2.c (CME11E9, simulator)

e Observations
o No delay between event time and signal change.
o No limitation due to software. Only limitation is due to hardware.

68HC11 Notes 37

11.4.4 Generating a PWM Signal (Output Compare 1 and 2)

Objective
o Generate the periodic signal shown below.
o By changing (modulating) the pulse width, the average voltage can be
controlled.
o Pulse Width modulation (PWM) is a method for generating an effective
analog voltage from a digital signal.

.. TON

TPERIOD

‘d e
i Lt}

TON
TPERIOD
V..=5 DutyCycle

ave

DutyCycle =

Strategy
o Use Output Compare 1 and 2 events.
o Connect signal to an output pin controlled by OC1 and OC2 (OC2/PA6).
o Algorithm
= Configure OC1 to set signal high.
= Configure OC2 to set signal low.
= Set OCI time.
= Begin loop
e (lear OC1 and OC2 flags.
e Wait for OCl1 event to occur.
e Set OC2 and next OC1 times.
= Repeat loop

Sample Source Code
ocpwm.c (CME11E9, simulator)

Observations
o No delay between event time and signal change.
o Software must have sufficient time after OC1 event to update OC2 time
(limitation on minimum on time).

Questions?
o What is the minimum period/pulse width that can be generated using this
method?
o What is the maximum period/pulse width that can be generated using this
method?

68HC11 Notes

38

12 Input Captures

12.1 Overview

e One external pin associated with each event.

e Event occurs when corresponding input signal generates specified edge (Input
Capture).

e When event occurs, TCNT is stored in the corresponding TICx register (Input

Capture).
e Stopwatch type event.

AN

ICx 1

TICx=TCNT

Input Capture Events (1...4)

Flag Interrupt ~ Control Pins
Enable Registers
ICxF ICxI EDGxB,EDGxA ICl...1C3,IC4
(TFLG1) (TMSK1) (TCTL2) PA2...PAO,PA3
(TICx)
Input Capture Control

EDGxB EDGxA Edge

0 0 Disabled (not controlled)

0 1 Rising

1 0 Falling

1 1 Any

Input Capture I/O Registers

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0O
TIC1 (Hi) 15 14 13 12 11 10 9 8
TIC1 (Lo) 7 6 5 4 3 2 1 0
TIC2 (Hi) 15 14 13 12 11 10 9 8
TIC2 (Lo) 7 6 5 4 3 2 1 0
TIC3(Hi) 15 14 13 12 11 10 9 8
TIC3 (Lo) 7 6 5 4 3 2 1 0
TI405 (Hi) 15 14 13 12 11 10 9 8
TI405 (Lo) 7 6 5 4 3 2 1 0
TCTL2 EDG4B EDG4A EDG1B EDG1A EDG2B EDG2A EDG3B EDG3A
TMSK1 - - - - I4051 IC1I IC2I IC3I
TFLG1 - - - - I405F IC1F IC2F IC3F

68HC11 Notes 39

12.2 Example — Measuring a Pulse Width
e Objective

©)

@)

0O O O O O O O O

Measure the pulse width of the signal shown below

_— Pulse Width —

Strategy

Connect signal to an input capture pin (pick IC1/PA2).
Configure IC1/PA2 for rising edge.

Clear IC1 flag. Wait for IC1 event to occur.

Record start time.

Configure IC1/PA2 for falling edge.

Clear ICI flag. Wait for IC1 event to occur.

Record stop time.

Calculate pulse width (ticks)

Disable IC1 control.

Sample Source Code

icpw.c (CME11lES, simulator)

©)
@)

©)
@)

Observations

No delay between detection of edge and recording of time.
Limited only by time required by software to prepare for the next event time.

<
A

S /

<«—Time to sefun next TIC1 >

TIC1 TIC1
(1* event) (2" event)

Questions?

What is the minimum pulse width that can be measured using this method?
What is the maximum pulse width that can be measured using this method?

68HC11 Notes 40

13 Analog-to-Digital Conversion

13.1 Overview

e An analog-to-digital converter (ADC) takes an analog signal (continuous value and
time), samples it (discrete time), and converts the value into a digital (discrete value)
representation.

A

111
110 +
101 -
100
011
010 -
001

000

e The voltage conversion range is determined by the Vy; and V4 signals. On the EVBU,
these signals are connected to +5 volts and 0 volts, respectively. The full-scale
voltage range (Vrs) is the difference between the high and low reference voltages.

Full-scale voltage range: Vi = (Vrh - V,_,) =5volts

e The number of bits on the ADC determines how accurately the analog voltage can be
represented. The 68HC11 has one 8-bit ADC. The step-size/resolution is the amount
of voltage range associated with one count.

Step size/resolution: AV = (%) = [%) =0.01953125 volts/count

e The relationship between the analog value (Vj,) and digital conversion (D,qc) 1s
shown below.

Digital conversion value: D, = [(VMA_VVM)J = {Z’I”/J counts

Approximate analog value: V, =~ D, -AV volts

in

e Example:

V, =3.2volts . :{ 3.2 J:L163.84J:163counts

0.01953

Dad
V. ~163-0.01953 = 3.1836 volts

D, . =163 counts

68HC11 Notes

41

13.2 Configuration

Analog-to-Digital Conversion Control

CD CC CB CA MULT=0 MULT=1
(ignore CB CA bits)

0 0 0 0 | ANO—>ADRx | ANO—>ADRI1

0 0 0 1 | ANI->ADRx | AN1—-ADR2

0 0 1 0 | AN2—>ADRx | AN2—>ADR3

0 0 1 1 | AN3—->ADRx | AN3—ADR4

0 1 0 0 | AN4>ADRx | AN4—>ADRI

0 1 0 1 | AN5—>ADRx | AN5—ADR?2

0 1 1 0 | AN6—>ADRx | AN6—>ADR3

0 1 1 1 | AN7—-ADRx | AN7—ADR4

1 - - - | test signals test signals

Analog-to-Digital Conversion I/O Registers

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
ADCTL ccr | 0 | scan | munTr | co | cc | cB | ca
ADR1 7 6 5 4 2 1 0
ADR2 7 6 5 4 2 1 0
ADR3 7 6 5 4 2 1 0
ADRA4 7 6 5 4 2 1 0
OPTION ADPU | CSEL | IRQE | DLY | CME | 0 CR1I | CRO

e The ADC requires extra power to operate. To conserve power, the ADC on the
68HCI1 is initially turned off. The ADPU bit turns on/off the analog-to-digital

converter (0=off, 1=on).

e There is one 8-bit analog-to-digital converter. A 16 input multiplexer is used to select

which signal to convert from 16 possible sources. Eight sources are from Port E. The
other eight are for testing purposes.

The conversion process is started by writing to the ADCTL register. One conversion
takes 64 ticks (32 usec). Conversions are always done in sets of four. The conversion
results are stored in the four ADRx registers.

SCAN bit determines number of conversion sets (0=one set, 1=continuous)

MULT bit determines number of signals to convert per set (0=one signal, 1=four
signals)

CD, CC, CB, CA bits determine which signal(s).

CCF flag is set by hardware when an entire set of conversions is completed. The flag
bit is cleared by writing to the ADCTL register.

68HC11 Notes 42

14 Serial Communication Interface (SCI)

14.1 Overview

Serial communication is a standard interface used to transmit data one bit at a time
across a single line.

Because only one line is used to send the data, each bit is sent for a fixed time
duration before the next bit is sent. On the receiver end, the line is checked at fixed
time intervals to determine the bit value. The rate at which the bits are sent (line is
checked) is called the BAUD rate. For example, a BAUD rate of 9600 means 9600
bits are sent every second.

Bits are grouped into frames. Each frame has additional control bits (start, stop) for
synchronization.

idle ‘start bit '~ data bits . étop bit idle

68HC11 Notes

43

14.2 Baud Rate

Prescaler
E Clock VSCPL,SCP0 | Clock | ¥ SCR2,SCR1,SCRO | SCI Clock
' (BAUD) " (BAUD) '
Serial Communication Interface (SCI) Clock
SCP1 SCPO |Scale Prescaler Rate [Hz]
0 0 1*16 125000
0 1 3*16 41667
1 0 4*16 31250
1 1 13*16 9600
SCR2 SCR1 SCRO {Scale BAUD Rate [bps]
(Prescaler = 9600)
0 0 0 1 9600
0 0 1 2 4800
0 1 0 4 2400
0 1 1 8 1200
1 0 0 16 600
1 0 1 32 300
1 1 0 64 150
1 1 1 128 75
Serial Communication I/0 Registers
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0O
BAUD - - SCP1 SCPO - SCR2 SCR1 SCRO
SCCR1 R8 T8 - M - - - -
SCCR2 - - - - TE RE - -
SCSR TDRE - RDRF - - - - -
SCDR R7/T7 R6/T6 R5/T5 R4/T4 R3/T3 R2/T2 R1/T1 RO/TO

68HC11 Notes 44

14.3 Transmit/Receive Data

Serial Communication Interface (SPI)

Enable Flag Data Pins
Transmit TE TDRE M (SCCR1) TxD (PDI1)
(SCCR2) (SCSR) (SCDR)
Receive RE RDRF M (SCCR1) RxD (PDO0)

(SCCR2) (SCSR) (SCDR)

e The Transmit Enable (TE) bit must be set to a 1 to enable transmission of serial data.

e The Receive Enable (TE) bit must be set to a 1 to enable reception of serial data.

e The Mode (M) bit selects the character format

0 = start bit, 8 data bits, 1 stop bit
1 = start bit, 9 data bits, 1 stop bit

e The Serial Communication Data Register (SCDR) is used for both the transmit data
register (write only) and the receive data register (read only).

e Transmit Data Register Empty (TDRE) flag set to a 1 by hardware when the SCDR
register is empty (ready to send new data). Flag cleared by reading the SCSR register
and then writing to the SCDR.

e Receive Data Register Full (RDRF) flag set to a 1 by hardware when the SCDR
register is full (new data received). Flag cleared by reading the SCSR register and
then reading from the SCDR.

68HC11 Notes

45

15 Pulse Accumulator

15.1 Overview

e Accumulates (counts) number of pulses (edges).
e Two modes of operation:
o Event counting — asynchronous counting (counts pulses)
o Gated time counting — synchronous counting (counts time)

15.2 Configuration

Pulse Accumulator Events

Event Flag Interrupt Control ~ Pins
Enable Registers
Input Edge PAIF PAII (PACTL) PA7

(TFLG2) (TMSK2) (PACNT)
Overflow PAOVF PAOVI (PACTL) PA7
(TFLG2) (TMSK2) (PACNT)

Pulse Accumulator Control Register (PACTL)

Bit Name Value Meaning
PAEN Pulse accumulator enable 0 disable
1 enable
PAMOD Pulse accumulator mode 0 event counting mode
1 gated time accumulation mode
PEDGE Pulse accumulator edge 0 falling edge (counting mode)

active high (gated-time mode)
1 rising edge (counting mode)
active low (gated-time mode)

Pulse Accumulator I/O Registers

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

PACTL DDRA7 PAEN | PAMOD | PEDGE | - \ - \ - -

PACNT 7 6 5 4 3 2 1 0

68HC11 Notes 46

15.3 Event Counting Mode

PAEN =1, PAMOD =0

PAI event occurs on specified edge of PA7 (PEDGE bit)
PACNT register increments on PAI event

PAOV event occurs on overflow of PACNT register

PA7 |_|

PACNT 2E 2F 30

N AN

15.4 Gated Time Accumulation Mode

PAEN=1,PAMOD =1

PAI event occurs on de-assertion of PA7 (PEDGE bit)

PACNT register increments while PA7 asserted

PACNT register increments on pulse accumulator clock edge (E-Clock/64)
PAOV event occurs on overflow of PACNT register

PA7

X

PACNT 2D 2D 2E 2F 30 30

PA Clock

68HC11 Notes 47

16 Interrupt Requests

e Occurs on specified signal level or edge

Interrupt Request (IRQ, XIRQ) Events
Event Flag Interrupt Control Pins
Enable Registers

XIRQ None None None XIRQ

IRQ None None IRQE IRQ
(OPTION)

IRQ STAF STAI EGA STAA

(PIOC) (PIOC) (PIOC)

XIRQ

N

+5V

HC11

1 B XIRQ

68HC11 Notes

48

Appendix A: Sample Source Code

standard.c (DOS)
/* FILENAME: standard.c
* AUTHOR: A. Blauch, GVSU
* COMPATIBILITY: DOS application
* DESCRIPTION:
* Sample source code for standard I/O functions
* This will not compile with the gcc 68HC11 compiler
* for the EVBU due to insufficient memory
*

/
#include <stdio.h>
int main(void)

{
int data=26;

printf ("Hello World\n");

printf ("sizeof (data) = %u\n",sizeof (data));
printf ("data = %d\n",data);

printf ("data = 0x%08X\n",data);

return 0;

68HC11 Notes

buffalo.c (CMM11E1, CME11E9, simulator)

/* FILENAME: buffalo.c

* AUTHOR: A. Blauch, GVSU

COMPATIBILITY: CMM11El, CME11lE9, simulator
DESCRIPTION:

Sample source code for BUFFALO I/0 functions
First part identical to standard I/0 example

/

L S S S

#include <buffalo.h>

int main(void)

{
int data=26;
char wvalue;
int counter;

/* Same output as standard.c */
puts ("Hello World\n");

puts ("sizeof (data) = ");

putint (sizeof (data));

puts ("\n");

puts ("data = ");
putint (data);
puts ("\n") ;

puts ("data = 0x");
puthex16 (data) ;
puts ("\n");

/* Example of BUFFALO I/O functions */

/* Read and write characters */
puts ("Please press a key: ");
value = getch();

puts ("\n") ;

puts ("You typed ");

putch (value) ;

puts ("\n") ;

/* Loops until character received */
puts ("Press any key to stop...");

counter = 0;
do {
if (++counter == 1000) {
counter = 0;
puts(".");
}
value = input();

} while (value==0);
puts ("\nYou typed ");
putch (value) ;

puts ("\n");

/* Read and write integers */
puts ("Please enter a number: ");
counter = getint();

puts ("\nYou typed ");

putint (counter) ;

puts ("\n");

return 0;

68HC11 Notes 50

int.c (CMM11E1, CME11E9, simulator)

/* FILENAME: int.c
* AUTHOR: A. Blauch, GVSU
* COMPATIBILITY: CMM11E1l, CME1lE9, simulator

* DESCRIPTION:
Sample source code for integer/floating-point math comparison

void func (int 3J)
{
}

int main(void)
{
int j;

for (j=0; 3<100; F++)
func(j);

return 0;

float.c (CMM11E1, CME11E9, simulator)

/* FILENAME : float.c
* AUTHOR: A. Blauch, GVSU
* COMPATIBILITY: CMM11El, CME11lE9, simulator

* DESCRIPTION:
* Sample source code for integer/floating-point math comparison

*/

void func (float j)
{
}

int main (void)
{
float j;

for (3=0; 3<100; J++)
func (j);

return 0;

68HC11 Notes

tent.c (CMM11E1, CME11E9, simulator)

/* FILENAME: tent.c

* AUTHOR: A. Blauch, GVSU

* COMPATIBILITY: CMM11E1l, CME1l1lE9, simulator (see comments)
* DESCRIPTION:

* Sample source code for free running counter

* Used to measure how long instructions take to execute

*

/

#include <buffalo.h>
#include <hclle9.h>

void Wait (void) {
puts("...Press any key..."); while (input() == 0); puts("\n");
}

void DisplayTime (char *text, unsigned time)
{

puts (text); putuint (time); puts (" ticks\n");
}

int main(void)
{

unsigned start, stop;

puts ("File: "); puts(_ FILE); puts("\n");
puts ("TCNT timing demonstration.\n");

puts ("Press any key to begin...\n");
getch();

/* Continually display time */

do {

DisplayTime ("TCNT = ",TCNT) ;
} while (input() == 0);
Wait();

/* Measure how long it takes to update an I/0 register */
start = TCNT;
PORTA = 0x23;
stop = TCNT;

DisplayTime ("Start = ",start);
DisplayTime ("Stop = ",stop);
DisplayTime ("Time = ",stop-start);
Wait ()

/* Measure how long it takes to transfer strings across serial port */

/* 11l Timing does not behave properly on simulator !!! */
start = TCNT;

puts ("1") ;

stop = TCNT;

DisplayTime ("\nTime = ",stop-start);

start = TCNT;

puts ("1234567890") ;

stop = TCNT;

DisplayTime ("\nTime = ",stop-start);

start = TCNT;

puts ("123456789012345678901234567890") ;
stop = TCNT;

DisplayTime ("\nTime = ",stop-start);

start = TCNT;

puts ("12345678901234567890123456789012345") ;
stop = TCNT;

DisplayTime ("\nTime = ",stop-start);

return 0;

68HC11 Notes

tentdelay.c (CMM11E1, CME11E9)

/* FILENAME: tcntdelay.c

* AUTHOR: A. Blauch, GVSU

* COMPATIBILITY: CMM11El, CMEL11E9

* DESCRIPTION:

* Sample source code for free running counter
* Used to perform a 5 second delay

*

/

#include <buffalo.h>
#include <hclle9.h>

/* This function uses a polling loop to check
* the free running counter. It will wait
* approximately the number of passed ticks
* before returning.
*/
void delay(unsigned ticks)
{

unsigned start;

start=TCNT; /* Record starting time */
/* Calculate elapsed time and compare */
while ((TCNT-start)<ticks);

int main (void)
{

int i;

puts ("File: "); puts(_FILE); puts("\n");
puts ("TCNT 5 second delay.\n");

/* Loop 5000 times - total delay of 5 second */
for (i=0; i<5000; i++) {

/* Delay approximately 1 msec */

delay (2000);
}

return 0;

68HC11 Notes

tentmpw.c (CME11E9, simulator)

/* FILENAME: tcntmpw. c

* AUTHOR: A. Blauch, GVSU

* COMPATIBILITY: CME11E9, simulator (tcntmpw pa2.sti)
* DESCRIPTION:

* Sample source code for free running counter

* Used to measure pulse width (PA2)

*

/

#include <buffalo.h>
#include <hclle9.h>

/* This function measures a positive pulse width
* on PA2 and returns the time in ticks.
*/

unsigned MeasurePulseWidth (void)

{

unsigned start, stop, width; /* Stop watch variables */

while ((PORTA & PA2) == PA2); /* Ensure start during low part */
while ((PORTA & PA2) == 0); /* Wait until PA2 high */

start = TCNT; /* Record start time */

while ((PORTA & PA2) == PA2); /* Wait until PA2 low */

stop = TCNT; /* Record stop time */

width = stop - start; /* Calculate pulse width (ticks) */

return width;

int main (void)
{

unsigned width;

puts ("File: "); puts(_FILE); puts("\n");
puts ("Measuring pulse width on PA2...\n");

width = MeasurePulseWidth () ;
puts ("Width = "); putuint (width); puts (" ticks\n");

return 0;

68HC11 Notes

tentgpw.c (CME11E9, simulator)

/* FILENAME: tcntgpw.c

* AUTHOR: A. Blauch, GVSU

* COMPATIBILITY: CME11E9, simulator

* DESCRIPTION:

* Sample source code for free running counter
* Used to generate pulse width (PA6)

*

/

#include <buffalo.h>
#include <hclle9.h>

/* This function generates a positive pulse width

* on PA6. The width is passed as a parameter in ticks.
*/

void GeneratePulseWidth (unsigned width)

{

unsigned start; /* Stop watch variables */
PORTA |= PAG; /* Set PA6 high */

start = TCNT; /* Record start time */

while ((TCNT-start) < width); /* Wait */

PORTA &= ~PAG6; /* Set PA6 low */

int main (void)

{
unsigned width = 100;

puts ("File: "); puts(_FILE); puts("\n");
puts ("Generating "); putuint (width); puts (" tick pulse on PA6.\n");
GeneratePulseWidth (width) ;

return 0;

68HC11 Notes

55

tofdelay.c (CMM11E1, CME11E9)

/* FILENAME: tofdelay.c

* AUTHOR: A. Blauch, GVSU

* COMPATIBILITY: CMM11El, CMEL11E9

* DESCRIPTION:

* Sample source code for timer overflow event
* Used to perform a 5 second delay

*/

#include <buffalo.h>
#include <hclle9.h>

int main(void)
{

int i;

puts ("File: "); puts(__ FILE); puts("\n");
puts ("Timer overflow 5 second delay.\n");

/* The free running counter overflows every 32.768 msec.
If we wait for the TO event to occur 160 times it will
correspond to a delay of approximately 5.1 seconds.
The first TO event will not occur after 32.768 msec because
we do not know exactly what time we entered the loop.

*/

for (i=0; i<160; i++) {
TFLG2 = TOF; /* Clear flag */
while ((TFLG2 & TOF) == 0);

}

return 0;

68HC11 Notes

tof.c (CMM11E1, CME11E9, simulator)

/* FILENAME: tof.c

* AUTHOR: A. Blauch, GVSU

* COMPATIBILITY: CMM11El, CME11lE9, simulator
* DESCRIPTION:

* Sample source code for timer overflow event

* Continuously displays free running counter

* Displays "hit" whenever TO event is noticed

*/

#include <buffalo.h>
#include <hclle9.h>

/* Required for usable simulation */
void Delay (void)
{

unsigned start = TCNT;

while ((TCNT-start) < 2000);
}

int main(void)

{
char key;
puts ("File: "); puts(_FILE); puts("\n");

puts ("Timer overflow event hit display (polling loop implementation).\n");

puts ("Press 'g' to quit.\n");

puts ("Press any key to begin...\n");

getch () ;

/* Polling loop */
do {
key = toupper (input());

/* Check if TO flag set */

if (TFLG2 & TOF) {
/* TO event occured */
TFLG2 = TOF; /* Clear flag */
puts ("Hit\n") ;

}

/* Display free running counter */
puthex16 (TCNT); puts("\n");

} while (key!='Q");

return 0;

68HC11 Notes

toi.c (CMM11E1, CME11E9, simulator)

/* FILENAME: toi.c

* AUTHOR: A. Blauch, GVSU

* COMPATIBILITY: CMM11El, CME11lE9, simulator
* DESCRIPTION:

* Sample source code for timer overflow interrupt
* Continuously displays free running counter

* Displays "hit" whenever TO interrupt occurs

*

/

#include <buffalo.h>
#include <hclle9.h>

/* ISR function declaration syntax */
void TO_ISR(void) _ attribute ((interrupt));

/* ISR function definition */

void TO_ISR(void)

{
TFLG2 = TOF; /* Clear flag */
puts ("Hit\n");

}

int main(void)

{
char key;
puts ("File: "); puts(_FILE); puts("\n");

puts ("Timer overflow event hit display (interrupt implementation).\n");

puts ("Press 'g' to quit.\n");

puts ("Press any key to begin...\n");

getch (),

/* Setup ISR */

__asm__ ("sei"); /* Mask interrupts */
* (unsigned *)0x00D1 = (unsigned)TO_ISR; /* Assign TO PIV */
TMSK2 |= TOI; /* Enable TO interrupt */
TFLG2 = TOF; /* Clear flag */

asm__ ("cli"); /* Unmask interrupts */

/* Polling loop */
do {
key = toupper (input());

/* Display free running counter */
puthex16 (TCNT) ; puts("\n");

} while (key!='Q");
/* Cleanup ISR */
asm__ ("sei"); /* Mask interrupts */

TMSK2 &= ~TOI; /* Disable TO interrupt */

return 0;

68HC11 Notes

58

tocntr.c (CMM11E1, CME11E9, simulator)

/* FILENAME: tocntr.c

* AUTHOR: A. Blauch, GVSU

* COMPATIBILITY: CMM11El, CME11lE9, simulator
* DESCRIPTION:

* Sample source code for timer overflow event

* Implements 32.768 msec counter

*

/

#include <buffalo.h>
#include <hclle9.h>

unsigned CheckEvent (void)
{
/* TO event configured to occur every 32.768 msec */
if (TFLG2 & TOF)
{
TFLG2 = TOF; /* Clear flag */
return 1;
}
return 0;

}

int main(void)

{
char key;
unsigned event counter=0;
unsigned polling counter=0;

puts ("File: "); puts(_FILE); puts("\n");
puts ("Timer overflow event counter (polling loop implementation).\n");
puts ("Press 'e' for event counter.\n");
puts ("Press 'p' for polling-loop counter.\n");
puts ("Press 'gq' to quit.\n");
do {
event counter += CheckEvent () ;
polling counter++;
key = toupper (input());
switch (key) {
case 'E':
putuint (event counter); puts ("\n") ;
break;
case 'P':
putuint (polling counter); puts ("\n") ;
break;
}
} while (key != 'Q');

return 0;

68HC11 Notes

59

rticntr.c (CMM11E1, CME11E9, simulator)

/* FILENAME: rticntr.c

* AUTHOR: A. Blauch, GVSU

* COMPATIBILITY: CMM11El, CME11lE9, simulator
* DESCRIPTION:

* Sample source code for real-time interrupt event
* Implements 4.096 msec counter

*

/

#include <buffalo.h>
#include <hclle9.h>

unsigned CheckEvent (void)
{
/* RTI event configured to occur every 4.096 msec */
if (TFLG2 & RTIF)
{
TFLG2 = RTIF; /* Clear flag */
return 1;
}
return 0;

}

int main(void)

{
char key;
unsigned event counter=0;
unsigned polling counter=0;

puts ("File: "); puts(_FILE); puts("\n");

puts ("Real-time interrupt event counter (polling loop implementation).\n");

puts ("Press 'e' for event counter.\n");
(
(

puts ("Press 'p' for polling-loop counter.\n");
puts ("Press 'gq' to quit.\n");
PACTL &= ~(RTR1 | RTRO); /* Set RTI to 4.096 msec */
do {
event counter += CheckEvent();
polling counter++;
key = toupper (input()):;
switch (key) {
case 'E':
putuint (event counter); puts("\n");
break;
case 'P':
putuint (polling counter); puts("\n");
break;
}
} while (key != 'Q');

PACTL &= ~(RTR1 | RTRO);

return 0;

68HC11 Notes

ocpwl.c (CME11E9, simulator)

/* FILENAME: ocpwl.c

* AUTHOR: A. Blauch, GVSU

* COMPATIBILITY: CME11E9, simulator

* DESCRIPTION:

* Sample source code for output compares

* Used to generate pulse width w/ OCl (PA6)
*

/

#include <buffalo.h>
#include <hclle9.h>

/* This function generates a positive pulse width

* on PA6. The width is passed as a parameter in ticks.
*/

void GeneratePulseWidth (unsigned width)

{

TOC1l = TCNT + 200; /* Set to start in 100 usec. */

OC1M = OC1M6; /* Configure OCl/PA7 to go high on next event. */
OC1lD = 0OC1D6;

TFLG1 = OClF; /* Clear OCl flag. */

while ((TFLGl & OClF) == 0); /* Wait for OCl event to occur. */

OC1D = 0; /* Configure OC1l/PA7 to go low on next event. */
TOC1 = TOC1 + width; /* Set new OCl event time. */

TFLG1 = OC1F; /* Clear OCl flag. */

while ((TFLGl & OClF) == 0); /* Wait for OCl event to occur. */

OC1M = 0; /* Disable OCl control. */

int main (void)
{
unsigned width = 100;

puts ("File: "); puts(_FILE); puts("\n");
puts ("Generating "); putuint (width); puts (" tick pulse on PA6.\n");
GeneratePulseWidth (width) ;

return 0;

68HC11 Notes

61

ocpw2.c (CME11E9, simulator)

/* FILENAME: ocpwl.c

* AUTHOR: A. Blauch, GVSU

* COMPATIBILITY: CME11E9, simulator

* DESCRIPTION:

* Sample source code for output compares

* Used to generate pulse width w/ OC2 (PA6)
*

/

#include <buffalo.h>
#include <hclle9.h>

/* This function generates a positive pulse width

* on PA6. The width is passed as a parameter in ticks.
*/

void GeneratePulseWidth (unsigned width)

{

TOC2 = TCNT + 200; /* Set to start in 100 usec. */

TCTL1 |= OL2; /* Configure OC2/PA6 to toggle on event.
TCTL1 &= ~OM2;

PORTA &= ~PAG; /* Set PA6 low. */

TFLG1 = OC2F; /* Clear 0OC2 flag. */

while ((TFLGl & OC2F) == 0); /* Wait for 0OC2 event to occur. */

TOC2 = TOC2 + width; /* Set new OC2 event time. */

TFLG1 = OC2F; /* Clear 0OC2 flag. */

while ((TFLGl & OC2F) == 0); /* Wait for 0OC2 event to occur. */

TCTL1 &= ~(OM2 | OL2); /* Disable OC2 control. */

int main (void)
{
unsigned width = 100;

puts ("File: "); puts(_FILE); puts("\n");
puts ("Generating "); putuint (width); puts (" tick pulse on PA6.\n");
GeneratePulseWidth (width) ;

return 0;

*/

68HC11 Notes

62

ocpwl2.c (CME11E9, simulator)

/* FILENAME: ocpwl2.c

* AUTHOR: A. Blauch, GVSU

COMPATIBILITY: CME11E9, simulator
DESCRIPTION:

Sample source code for output compares

Used to generate pulse width w/ OCl & OC2 (PAG6)
/

L S S S

#include <buffalo.h>
#include <hclle9.h>

/* This function generates a positive pulse width

* on PA6. The width is passed as a parameter in ticks.

*/

*/

*/

void GeneratePulseWidth (unsigned width)

{
TOC1l = TCNT + 200; /* Set to start in 100 usec. */
OC1IM = OC1M6; /* Configure OCl to set signal high.
OC1D = 0OC1D6;
TCTL1 |= OM2; /* Configure OC2 to set signal low.
TCTL1l &= ~OL2;
TOC2 = TOCl + width;
TFLG1 = OC1lF | OC2F; /* Clear OCl and 0OC2 flags. */
while ((TFLG1 & OC2F) == 0); /* Wait for OC2 event to occur. */
OC1M = 0; /* Disable OCl and 0OC2 control. */
OC1D = 0;
TCTL1 &= ~(OM2 | OL2);

}

int main (void)

{
unsigned width = 100;
puts ("File: "); puts(_FILE); puts("\n");
puts ("Generating "); putuint (width); puts (" tick pulse on PA6.\n");

GeneratePulseWidth (width) ;

return 0;

68HC11 Notes

63

ocpwm.c (CME11E9, simulator)

/* FILENAME: ocpwm.c

* AUTHOR: A. Blauch, GVSU

* COMPATIBILITY: CME11E9, simulator

* DESCRIPTION:

* Sample source code for output compares

* Used to generate pwm signal w/ OCl & OC2 (PA®6)
*

/

#include <buffalo.h>
#include <hclle9.h>

/* This function generates a pulse width modulated signal
* on PA6. The width and period are passed as a parameter in ticks.
*/

void GeneratePWM (unsigned width, unsigned period)

{

unsigned num pulses = 10;

TOC1 = TCNT + 200; /* Set to start in 100 usec. */

TOC2 = TCNT;

OC1M = OC1M6; /* Configure OCl to set signal high. */
OC1D = 0OC1D6;

TCTL1 |= OM2; /* Configure 0OC2 to set signal low. */

TCTL1 &= ~OL2;

do {
TFLG1 = OC1lF | OC2F; /* Clear OCl and 0OC2 flags. */
while ((TFLGl1 & OClF) == 0); /* Wait for OCl event to occur.
TOC2 = TOC1 + width; /* Set 0OC2 and next OCl times.

TOC1l = TOCl + period;
} while (num pulses--);

OoClM = 0; /* Disable OCl and OC2 control. */
OClD = 0;
TCTL1 &= ~(OM2 | OL2);

int main (void)
{
unsigned width = 100, period = 300;

puts ("File: "); puts(_FILE); puts("\n");
puts ("Generating PWM on PA6.\n");

putuint (width); puts(" tick on time\n");
putuint (period); puts (" tick period\n");
GeneratePWM (width, period);

return 0;

68HC11 Notes

icpw.c (CME11E9, simulator)

/* FILENAME: icpw.c

* AUTHOR: A. Blauch, GVSU

* COMPATIBILITY: CME11E9, simulator (icpw paZ2.sti)
* DESCRIPTION:

* Sample source code for input captures

* Used to measure pulse width w/ IC1l (PA2)

*

/

#include <buffalo.h>
#include <hclle9.h>

/* This function measures a positive pulse width
* on PA2 and returns the time in ticks.

*/

unsigned MeasurePulseWidth (void)

{

unsigned start, stop, width;

TCTL2 |= EDG1A; /* Configure IC1/PA2 for rising edge. */
TCTL2 &= ~EDG1B;

TFLG1 = IClF; /* Clear ICl flag. */

while ((TFLGl & IC1lF) == 0); /* Wait for ICl event to occur. */

start = TIC1; /* Record start time */

TCTL2 |= EDG1B; /* Configure IC1/PA2 for falling edge. */

TCTL2 &= ~EDG1A;

TFLG1 = IC1F; /* Clear IC1 flag. */

while ((TFLGl & IClF) == 0); /* Wait for ICl event to occur. */
stop = TICI; /* Record stop time */

width = stop - start; /* Calculate pulse width (ticks) */
TCTL2 &= ~(EDG1lA | EDGI1B); /* Disable IC1 control. */

return width;

int main (void)
{

unsigned width;

puts ("File: "); puts(_FILE); puts("\n");
puts ("Measuring pulse width on PA2...\n");

width = MeasurePulseWidth () ;
puts ("Width = "); putuint (width); puts (" ticks\n");

return 0;

68HC11 Notes 65

Appendix B: Sample Programming Problems

10.

. Write a program that sets the output signal on PD2 equal to the complement of the

input signal on PD3. The program should loop continuously until the input signal
on PE3 becomes high.

Write a program that generates a digital output signal that is the complement of a
digital input signal (software implementation of a NOT gate). The program should
loop continuously. You may decide which pin(s) to use.

Write a program that displays on HyperTerminal the alphabet in reverse order.
The letters are to be displayed at a rate of one character every 1 sec.

Write a program that generates a 10 kHz, 60% duty cycle signal. The program
should loop continuously. You may decide which pin(s) to use.

. Write a program that generates a single 0.5 psec pulse. The program should

generate one pulse and then exit. You may decide which pin(s) to use.

Write a program that will measure the period of a square wave (50% duty cycle)
input signal. The period is to be displayed on HyperTerminal in psec. The
program should perform one measurement and then exit. You may decide which
pin(s) to use.

Write a program to determine the time-shift between two digital input signals.
The time-shift should be measured between the rising edges and displayed on
HyperTerminal in psec. The program should perform one measurement and then
exit. You may decide which pin(s) to use.

Write a program that calculates the average (DC) value of an analog input signal.
You must take a measurement every millisecond. The average must be calculated
over a 100 msec interval and displayed on HyperTerminal in counts. The program
should perform one measurement and then exit. You may decide which pin(s) to
use.

Write a program to determine the turn-on threshold voltage for the 68HCI11
digital input circuitry. The turn-on voltage is to be displayed on HyperTerminal in
counts. The program should perform one measurement and then exit. You may
decide which pin(s) to use.

Write a program the compares two analog input signals, V| and V,. A digital
output signal must be settoa 1 if V; > V,, and to a 0 if V| <=V, (software
implementation of a comparator circuit). The program should loop continuously.
You may decide which pin(s) to use.

