
Order this document
by AN1060/D

Rev. 1.0

Motorola Semiconductor Application Note

AN1060
M68HC11 Bootstrap Mode
By Jim Sibigtroth, Mike Rhoades, and John Langan

Austin, Texas

Introduction

The M68HC11 Family of MCUs (microcontroller units) has a bootstrap
mode that allows a user-defined program to be loaded into the internal
random-access memory (RAM) by way of the serial communications
interface (SCI); the M68HC11 then executes this loaded program. The
loaded program can do anything a normal user program can do as well
as anything a factory test program can do because protected control bits
are accessible in bootstrap mode. Although the bootstrap mode is a
single-chip mode of operation, expanded mode resources are
accessible because the mode control bits can be changed while
operating in the bootstrap mode.

This application note explains the operation and application of the
M68HC11 bootstrap mode. Although basic concepts associated with
this mode are quite simple, the more subtle implications of these
functions require careful consideration. Useful applications of this mode
are overlooked due to an incomplete understanding of bootstrap mode.
Also, common problems associated with bootstrap mode could be
avoided by a more complete understanding of its operation and
implications.
© Motorola, Inc., 1999 AN1060 — Rev. 1.0

Application Note
Topics discussed in this application note include:

• Basic operation of the M68HC11 bootstrap mode

• General discussion of bootstrap mode uses

• Detailed explanation of on-chip bootstrap logic

• Detailed explanation of bootstrap firmware

• Bootstrap firmware vs. EEPROM security

• Incorporating the bootstrap mode into a system

• Driving bootstrap mode from another M68HC11

• Driving bootstrap mode from a personal computer

• Common bootstrap mode problems

• Variations for specific versions of M68HC11

• Commented listings for selected M68HC11 bootstrap ROMs

Basic Bootstrap Mode

This section describes only basic functions of the bootstrap mode. Other
functions of the bootstrap mode are described in detail in the remainder
of this application note.

When an M68HC11 is reset in bootstrap mode, the reset vector is
fetched from a small internal read-only memory (ROM) called the
bootstrap ROM or boot ROM. The firmware program in this boot ROM
then controls the bootloading process, in this manner:

• First, the on-chip SCI (serial communications interface) is
initialized. The first character received ($FF) determines which of
two possible baud rates should be used for the remaining
characters in the download operation.

• Next, a binary program is received by the SCI system and is stored
in RAM.

• Finally, a jump instruction is executed to pass control from the
bootloader firmware to the user’s loaded program.
AN1060 — Rev. 1.0

2 MOTOROLA

Application Note
Basic Bootstrap Mode
Bootstrap mode is useful both at the component level and after the MCU
has been embedded into a finished user system.

At the component level, Motorola uses bootstrap mode to control a
monitored burn-in program for the on-chip electrically erasable
programmable read-only memory (EEPROM). Units to be tested are
loaded into special circuit boards that each hold many MCUS. These
boards are then placed in burn-in ovens. Driver boards outside the
ovens download an EEPROM exercise and diagnostic program to all
MCUs in parallel. The MCUs under test independently exercise their
internal EEPROM and monitor programming and erase operations. This
technique could be utilized by an end user to load program information
into the EPROM or EEPROM of an M68HC11 before it is installed into
an end product. As in the burn-in setup, many M68HC11s can be gang
programmed in parallel. This technique can also be used to program the
EPROM of finished products after final assembly.

Motorola also uses bootstrap mode for programming target devices on
the M68HC11 evaluation modules (EVM). Because bootstrap mode is a
privileged mode like special test, the EEPROM-based configuration
register (CONFIG) can be programmed using bootstrap mode on the
EVM.

The greatest benefits from bootstrap mode are realized by designing the
finished system so that bootstrap mode can be used after final
assembly. The finished system need not be a single-chip mode
application for the bootstrap mode to be useful because the expansion
bus can be enabled after resetting the MCU in bootstrap mode. Allowing
this capability requires almost no hardware or design cost and the
addition of this capability is invisible in the end product until it is needed.

The ability to control the embedded processor through downloaded
programs is achieved without the disassembly and chip-swapping
usually associated with such control. This mode provides an easy way
to load non-volatile memories such as EEPROM with calibration tables
or to program the application firmware into a one-time programmable
(OTP) MCU after final assembly.

Another powerful use of bootstrap mode in a finished assembly is for
final test. Short programs can be downloaded to check parts of the
AN1060 — Rev. 1.0

MOTOROLA 3

Application Note
system, including components and circuitry external to the embedded
MCU. If any problems appear during product development, diagnostic
programs can be downloaded to find the problems, and corrected
routines can be downloaded and checked before incorporating them into
the main application program.

Bootstrap mode can also be used to interactively calibrate critical analog
sensors. Since this calibration is done in the final assembled system, it
can compensate for any errors in discrete interface circuitry and cabling
between the sensor and the analog inputs to the MCU. Note that this
calibration routine is a downloaded program that does not take up space
in the normal application program.

Bootstrap Mode Logic

In the M68HC11 MCUs, very little logic is dedicated to the bootstrap
mode. Consequently, this mode adds almost no extra cost to the MCU
system. The biggest piece of circuitry for bootstrap mode is the small
boot ROM. This ROM is 192 bytes in the original MC68HC11A8, but
some of the newest members of the M68HC11 Family, such as the
MC68HC711K4, have as much as 448 bytes to accommodate added
features. Normally, this boot ROM is present in the memory map only
when the MCU is reset in bootstrap mode to prevent interference with
the user’s normal memory space. The enable for this ROM is controlled
by the read boot ROM (RBOOT) control bit in the highest priority
interrupt (HPRIO) register. The RBOOT bit can be written by software
whenever the MCU is in special test or special bootstrap modes; when
the MCU is in normal modes, RBOOT reverts to 0 and becomes a read-
only bit. All other logic in the MCU would be present whether or not there
was a bootstrap mode.

Figure 1 shows the composite memory map of the MC68HC711E9 in its
four basic modes of operation, including bootstrap mode. The active
mode is determined by the mode A (MDA) and special mode (SMOD)
control bits in the HPRIO control register. These control bits are in turn
controlled by the state of the mode A (MODA) and mode B (MODB) pins
during reset. Table 1 shows the relationship between the state of these
AN1060 — Rev. 1.0

4 MOTOROLA

Application Note
Bootstrap Mode Logic
pins during reset, the selected mode, and the state of the MDA, SMOD,
and RBOOT control bits. Refer to the composite memory map and
information in Table 1 for the following discussion.

The MDA control bit is determined by the state of the MODA pin as the
MCU leaves reset. MDA selects between single-chip and expanded
operating modes. When MDA is 0, a single-chip mode is selected, either
normal single-chip mode or special bootstrap mode. When MDA is 1, an
expanded mode is selected, either normal expanded mode or special
test mode.

The SMOD control bit is determined by the inverted state of the MODB
pin as the MCU leaves reset. SMOD controls whether a normal mode or
a special mode is selected. When SMOD is 0, one of the two normal
modes is selected, either normal single-chip mode or normal expanded
mode. When SMOD is 1, one of the two special modes is selected, either
special bootstrap mode or special test mode. When either special mode
is in effect (SMOD = 1), certain privileges are in effect, for instance, the
ability to write to the mode control bits and fetching the reset and
interrupt vectors from $BFxx rather than $FFxx.

The alternate vector locations are achieved by simply driving address bit
A14 low during all vector fetches if SMOD = 1. For special test mode, the
alternate vector locations assure that the reset vector can be fetched
from external memory space so the test system can control MCU
operation. In special bootstrap mode, the small boot ROM is enabled in
the memory map by RBOOT = 1 so the reset vector will be fetched from
this ROM and the bootloader firmware will control MCU operation.

Table 1. Mode Selection Summary

Input Pins
Mode Selected

Control Bits in HPRIO

MODB MODA RBOOT SMOD MDA

1 0 Normal single chip 0 0 0

0 0 Normal expanded 0 0 1

0 0 Special bootstrap 1 1 0

0 1 Special test 0 1 1
AN1060 — Rev. 1.0

MOTOROLA 5

Application Note
RBOOT is reset to 1 in bootstrap mode to enable the small boot ROM.
In the other three modes, RBOOT is reset to 0 to keep the boot ROM out
of the memory map. While in special test mode, SMOD = 1, which allows
the RBOOT control bit to be written to 1 by software to enable the boot
ROM for testing purposes.

Boot ROM Firmware

The main program in the boot ROM is the bootloader, which is
automatically executed as a result of resetting the MCU in bootstrap
mode. Some newer versions of the M68HC11 Family have additional
utility programs that can be called from a downloaded program. One
utility is available to program EPROM or OTP versions of the M68HC11.
A second utility allows the contents of memory locations to be uploaded
to a host computer. In the MC68HC711K4 boot ROM, a section of code
is used by Motorola for stress testing the on-chip EEPROM. These test
and utility programs are similar to self-test ROM programs in other
MCUs except that the boot ROM does not use valuable space in the
normal memory map.

Bootstrap firmware is also involved in an optional EEPROM security
function on some versions of the M68HC11. This EEPROM security
feature prevents a software pirate from seeing what is in the on-chip
EEPROM. The secured state is invoked by programming the no security
(NOSEC) EEPROM bit in the CONFIG register. Once this NOSEC bit is
programmed to 0, the MCU will ignore the mode A pin and always come
out of reset in normal single-chip mode or special bootstrap mode,
depending on the state of the mode B pin. Normal single-chip mode is
the usual way a secured part would be used. Special bootstrap mode is
used to disengage the security function (only after the contents of
EEPROM and RAM have been erased). Refer to the M68HC11
Reference Manual, Motorola document order number M68HC11RM/AD,
for additional information on the security mode and complete listings of
the boot ROMs that support the EEPROM security functions.
AN1060 — Rev. 1.0

6 MOTOROLA

Application Note
Automatic Selection of Baud Rate
Automatic Selection of Baud Rate

The bootloader program in the MC68HC711E9 accommodates either of
two baud rates.

• The higher of these baud rates (7812 baud at a 2-MHz E-clock
rate) is used in systems that operate from a binary frequency
crystal such as 223 Hz (8.389 MHz). At this crystal frequency, the
baud rate is 8192 baud, which was used extensively in automotive
applications.

• The second baud rate available to the M68HC11 bootloader is
1200 baud at a 2-MHz E-clock rate. Some of the newest versions
of the M68HC11, including the MC68HC11F1 and
MC68HC117K4, accommodate other baud rates using the same
differentiation technique explained here. Refer to the reference
numbers in square brackets in Figure 2 during the following
explanation.

NOTE: Software can change some aspects of the memory map after reset.

Figure 2 shows how the bootloader program differentiates between the
default baud rate (7812 baud at a 2-MHz E-clock rate) and the alternate
baud rate (1200 baud at a 2-MHz E-clock rate). The host computer
sends an initial $FF character, which is used by the bootloader to
determine the baud rate that will be used for the downloading operation.
The top half of Figure 2 shows normal reception of $FF. Receive data
samples at [1] detect the falling edge of the start bit and then verify the
start bit by taking a sample at the center of the start bit time. Samples
are then taken at the middle of each bit time [2] to reconstruct the value
of the received character (all 1s in this case). A sample is then taken at
the middle of the stop bit time as a framing check (a 1 is expected) [3].
Unless another character immediately follows this $FF character, the
receive data line will idle in the high state as shown at [4].

The bottom half of Figure 2 shows how the receiver will incorrectly
receive the $FF character that is sent from the host at 1200 baud.
Because the receiver is set to 7812 baud, the receive data samples are
taken at the same times as in the upper half of Figure 2. The start bit at
1200 baud [5] is 6.5 times as long as the start bit at 7812 baud [6].
AN1060 — Rev. 1.0

MOTOROLA 7

Application Note
Figure 1. MC68HC711E9 Composite Memory Map

Figure 2. Automatic Detection of Baud Rate

$0000

512-BYTE
RAM$01FF

$1000

$103F

$B600

$B7FF

$BF00

$BFFF

$FFFF

$BFC0

$FFC0

SINGLE
CHIP

EXPANDED
MULTIPLEXED

EXTERNAL

EXTERNAL

SPECIAL
BOOTSTRAP

SPECIAL
TEST

EXTERNAL

EXTERNAL

EXTERNAL

64-BYTE
REGISTER

BLOCK

512-BYTE
EEPROM

BOOT
ROM

12K USER
EPROM
(or OTP)

(MAY BE REMAPPED
TO ANY 4K BOUNDARY)

(MAY BE REMAPPED
TO ANY 4K BOUNDARY)

(MAY BE DISABLED
BY AN EEPROM BIT)

(MAY BE DISABLED
BY AN EEPROM BIT)

SPECIAL
MODE

VECTORS

NORMAL
MODE

VECTORS

$BFC0

$BFFF

$FFC0

$FFFF

MODA = 0
MODB = 1

MODA = 1
MODB = 1

MODA = 0
MODB = 0

MODA = 1
MODB = 0

EXTERNAL

NOTE: Software can change some aspects of the memory map after reset.

$D000

START$FF CHARACTER
@ 7812 BAUD

[6]

BIT 0 BIT 1 BIT 2 BIT 3 BIT 4 BIT 5 BIT 7BIT 6 STOP Tx DATA LINE IDLES HIGH

START$FF CHARACTER
@ 1200 BAUD

BIT 0 BIT 1

0 1S 1 1 1 1 1 1 1 1
Rx DATA SAMPLES

0 0S 0 0 0 0 ? 1 1 1
Rx DATA SAMPLES
(FOR 7812 BAUD)

$FF

$C0
or $E0

[12]

[1]
[2]

[3]

[4]

[5]

[7]
[9]

[10]

[11][8]
AN1060 — Rev. 1.0

8 MOTOROLA

Application Note
Main Bootloader Program
Samples taken at [7] detect the failing edge of the start bit and verify it is
a logic 0. Samples taken at the middle of what the receiver interprets as
the first five bit times [8] detect logic 0s. The sample taken at the middle
of what the receiver interprets as bit 5 [9] may detect either a 0 or a 1
because the receive data has a rising transition at about this time. The
samples for bits 6 and 7 detect 1s, causing the receiver to think the
received character was $C0 or $E0 [10] at 7812 baud instead of the $FF
which was sent at 1200 baud. The stop bit sample detects a 1 as
expected [11], but this detection is actually in the middle of bit 0 of the
1200 baud $FF character. The SCI receiver is not confused by the rest
of the 1200 baud $FF character because the receive data line is high
[12] just as it would be for the idle condition. If a character other than $FF
is sent as the first character, an SCI receive error could result.

Main Bootloader Program

Figure 3 is a flowchart of the main bootloader program in the
MC68HC711E9. This bootloader demonstrates the most important
features of the bootloaders used on all M68HC11 Family members. For
complete listings of other M68HC11 versions, refer to Listing 3.
MC68HC711E9 Bootloader ROM at the end of this application note,
and to Appendix B of the M68HC11 Reference Manual, Motorola
document order number M68HC11RM/AD.

The reset vector in the boot ROM points to the start [1] of this program.
The initialization block [2] establishes starting conditions and sets up the
SCI and port D. The stack pointer is set because there are push and pull
instructions in the bootloader program. The X index register is pointed at
the start of the register block ($1000) so indexed addressing can be
used. Indexed addressing takes one less byte of ROM space than
extended instructions, and bit manipulation instructions are not available
in extended addressing forms. The port D wire-OR mode (DWOM) bit in
the serial peripheral interface control register (SPCR) is set to configure
port D for wired-OR operation to minimize potential conflicts with
external systems that use the PD1/TxD pin as an input. The baud rate
for the SCI is initially set to 7812 baud at a 2-MHz E-clock rate but can
automatically switch to 1200 baud based on the first character received.
AN1060 — Rev. 1.0

MOTOROLA 9

Application Note
The SCI receiver and transmitter are enabled. The receiver is required
by the bootloading process, and the transmitter is used to transmit data
back to the host computer for optional verification. The last item in the
initialization is to set an intercharacter delay constant used to terminate
the download when the host computer stops sending data to the
MC68HC711E9. This delay constant is stored in the timer output
compare 1 (TOC1) register, but the on-chip timer is not used in the
bootloader program. This example illustrates the extreme measures
used in the bootloader firmware to minimize memory usage. However,
such measures are not usually considered good programming technique
because they are misleading to someone trying to understand the
program or use it as an example.

After initialization, a break character is transmitted [3] by the SCI. By
connecting the TxD pin to the RxD pin (with a pullup because of port D
wired-OR mode), this break will be received as a $00 character and
cause an immediate jump [4] to the start of the on-chip EEPROM ($B600
in the MC68HC711E9). This feature is useful to pass control to a
program in EEPROM essentially from reset. Refer to Common
Bootstrap Mode Problems before using this feature.

If the first character is received as $FF, the baud rate is assumed to be
the default rate (7812 baud at a 2-MHz E-clock rate). If $FF was sent at
1200 baud by the host, the SCI will receive the character as $E0 or $C0
because of the baud rate mismatch, and the bootloader will switch to
1200 baud [5] for the rest of the download operation. When the baud rate
is switched to 1200 baud, the delay constant used to monitor the
intercharacter delay also must be changed to reflect the new character
time.

At [6], the Y index register is initialized to $0000 to point to the start of
on-chip RAM. The index register Y is used to keep track of where the
next received data byte will be stored in RAM. The main loop for loading
begins at [7].

The number of data bytes in the downloaded program can be any
number between 0 and 512 bytes (the size of on-chip RAM). This
procedure is called "variable-length download" and is accomplished by
ending the download sequence when an idle time of at least four
character times occurs after the last character to be downloaded. In
AN1060 — Rev. 1.0

10 MOTOROLA

Application Note
Main Bootloader Program
M68HC11 Family members which have 256 bytes of RAM, the download
length is fixed at exactly 256 bytes plus the leading $FF character.

The intercharacter delay counter is started [8] by loading the delay
constant from TOC1 into the X index register. The 19-E-cycle wait loop
is executed repeatedly until either a character is received [9] or the
allowed intercharacter delay time expires [10]. For 7812 baud, the delay
constant is 10,241 E cycles (539 x 19 E cycles per loop). Four character
times at 7812 baud is 10,240 E cycles (baud prescale of 4 x baud divider
of 4 x 16 internal SCI clocks/bit time x 10 bit times/character x 4
character times). The delay from reset to the initial $FF character is not
critical since the delay counter is not started until after the first character
($FF) is received.

To terminate the bootloading sequence and jump to the start of RAM
without downloading any data to the on-chip RAM, simply send $FF and
nothing else. This feature is similar to the jump to EEPROM at [4] except
the $FF causes a jump to the start of RAM. This procedure requires that
the RAM has been loaded with a valid program since it would make no
sense to jump to a location in uninitialized memory.

After receiving a character, the downloaded byte is stored in RAM [11].
The data is transmitted back to the host [12] as an indication that the
download is progressing normally. At [13], the RAM pointer is
incremented to the next RAM address. If the RAM pointer has not
passed the end of RAM, the main download loop (from [7] to [14]) is
repeated.

When all data has been downloaded, the bootloader goes to [16]
because of an intercharacter delay timeout [10] or because the entire
512-byte RAM has been filled [15]. At [16], the X and Y index registers
are set up for calling the PROGRAM utility routine, which saves the user
from having to do this in a downloaded program. The PROGRAM utility
is fully explained in EPROM Programming Utility. The final step of the
bootloader program is to jump to the start of RAM [17], which starts the
user’s downloaded program.
AN1060 — Rev. 1.0

MOTOROLA 11

Application Note
Figure 3. MC68HC711E9 Bootloader Flowchart

RECEIVE DATA READY ?

INITIALIZATION:
 SP = TOP OF RAM ($01FF)
 X = START OF REGS ($1000)
 SPCR = $20 (SET DWOM BIT)
 BAUD = $A2 (÷ 4; ÷ 4) (7812.5 BAUD @ 2 MHz)
 SCCR2 = $C0 (Tx & Rx ON)
 TOC1 = DELAY CONSTANT (539 = 4 SCI CHARACTER TIMES)

START FROM RESET
IN BOOT MODE

SEND BREAK

RECEIVED FIRST CHAR YET ?
NO

YES

FIRST CHAR = $00 ?

NO

YES JUMP TO START
OF EEPROM ($B600)

NOTZERO

FIRST CHAR = $FF ?

NO

YES

BAUDOK

SWITCH TO SLOWER SCI RATE...
 BAUD = $33 (÷13; ÷ 8) (1200 BAUD @ 2 MHz)
CHANGE DELAY CONSTANT...
 TOC1 = 3504 (4 SCI CHARACTER TIMES)

NOTE THAT A BREAK
CHARACTER IS ALSO

RECEIVED AS $00

POINT TO START OF RAM (Y = $0000)

INITIALIZE TIMEOUT COUNT

STORE RECEIVED DATA TO RAM (,Y)

TRANSMIT (ECHO) FOR VERIFY

POINT AT NEXT RAM LOCATION

SET UP FOR PROGRAM UTILITY:
 X = PROGRAMMING TIME CONSTANT
 Y = START OF EPROM

JUMP TO START
OF RAM ($0000)

WAIT

NO

YES

WTLOOP

DECREMENT TIMEOUT COUNT

TIMED OUT YET ?
NO

YES

PAST END OF RAM ?
NO

YES
STAR

LOOP =
19

CYCLES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
AN1060 — Rev. 1.0

12 MOTOROLA

Application Note
UPLOAD Utility
UPLOAD Utility

The UPLOAD utility subroutine transfers data from the MCU to a host
computer system over the SCI serial data link.

NOTE: Only EPROM versions of the M68HC11 include this utility.

Verification of EPROM contents is one example of how the UPLOAD
utility could be used. Before calling this program, the Y index register is
loaded (by user firmware) with the address of the first data byte to be
uploaded. If a baud rate other than the current SCI baud rate is to be
used for the upload process, the user’s firmware must also write to the
baud register. The UPLOAD program sends successive bytes of data
out the SCI transmitter until a reset is issued (the upload loop is infinite).

For a complete commented listing example of the UPLOAD utility, refer
to Listing 3. MC68HC711E9 Bootloader ROM.

EPROM Programming Utility

The EPROM programming utility is one way of programming data into
the internal EPROM of the MC68HC711E9 MCU. An external 12-V
programming power supply is required to program on-chip EPROM. The
simplest way to use this utility program is to bootload a 3-byte program
consisting of a single jump instruction to the start of the PROGRAM
utility program ($BF00). The bootloader program sets the X and Y index
registers to default values before jumping to the downloaded program
(see [16] at the bottom of Figure 3). When the host computer sees the
$FF character, data to be programmed into the EPROM is sent, starting
with the character for location $D000. After the last byte to be
programmed is sent to the MC68HC711E9 and the corresponding
verification data is returned to the host, the programming operation is
terminated by resetting the MCU.

The number of bytes to be programmed, the first address to be
programmed, and the programming time can be controlled by the user if
values other than the default values are desired.
AN1060 — Rev. 1.0

MOTOROLA 13

Application Note
To understand the detailed operation of the EPROM programming utility,
refer to Figure 4 during the following discussion. Figure 4 is composed
of three interrelated parts. The upper-left portion shows the flowchart of
the PROGRAM utility running in the boot ROM of the MCU. The upper-
right portion shows the flowchart for the user-supplied driver program
running in the host computer. The lower portion of Figure 4 is a timing
sequence showing the relationship of operations between the MCU and
the host computer. Reference numbers in the flowcharts in the upper
half of Figure 4 have matching numbers in the lower half to help the
reader relate the three parts of the figure.

The shaded area [1] refers to the software and hardware latency in the
MCU leading to the transmission of a character (in this case, the $FF).
The shaded area [2] refers to a similar latency in the host computer (in
this case, leading to the transmission of the first data character to the
MCU).

The overall operation begins when the MCU sends the first character
($FF) to the host computer, indicating that it is ready for the first data
character. The host computer sends the first data byte [3] and enters its
main loop. The second data character is sent [4], and the host then waits
[5] for the first verify byte to come back from the MCU.

After the MCU sends $FF [8], it enters the WAIT1 loop [9] and waits for
the first data character from the host. When this character is received
[10], the MCU programs it into the address pointed to by the Y index
register. When the programming time delay is over, the MCU reads the
programmed data, transmits it to the host for verification [11], and
returns to the top of the WAIT1 loop to wait for the next data character
[12]. Because the host previously sent the second data character, it is
already waiting in the SCI receiver of the MCU. Steps [13], [14], and [15]
correspond to the second pass through the WAIT1 loop.

Back in the host, the first verify character is received, and the third data
character is sent [6]. The host then waits for the second verify character
[7] to come back from the MCU. The sequence continues as long as the
host continues to send data to the MCU. Since the WAIT1 loop in the
PROGRAM utility is an indefinite loop, reset is used to end the process
in the MCU after the host has finished sending data to be programmed.
AN1060 — Rev. 1.0

14 MOTOROLA

Application Note
EPROM Programming Utility
Figure 4. Host and MCU Activity during EPROM PROGRAM Utility

D1

A
A

$FF

P1

D2

AA
AA

V1

P2

AA
AA

V2

D3

P3

D4

AA
AA

V3

P4

A
A

V4

D5

EPROM PROGRAMMING

MCU RECEIVE DATA (FROM HOST)

MCU TRANSMIT DATA (VERIFY)

A
A $FF

AA
AAV1

AA
AAV2

AA
AAV3

A
AV4VERIFY DATA TO HOST

(SAME AS MCU Tx DATA)

MC68HC711E9
EXECUTING
"PROGRAM" LOOP

HOST SENDING
DATA FOR
MCU EPROM[3]

[4] [5]

[6]
[1]

[2]

[7]

[8]
[9]

[10]

[11]
[12]

[13]

[14]
[15]

SEND $FF

START

INITIALIZE...
X = PROGRAM TIME
Y = FIRST ADDRESS

$BF00 - PROGRAM

WAIT1

ANY DATA RECEIVED ?
NO

YES

PROGRAM BYTE

READ PROGRAMMED DATA
AND SEND TO VERIFY

POINT TO NEXT LOCATION
TO BE PROGRAMMED

INDICATES READY
TO HOST SEND FIRST DATA BYTE

START

HOST NORMALLY WAITS FOR $FF
FROM MCU BEFORE SENDING DATA

FOR EPROM PROGRAMMING

DATA_LOOP

MORE DATA TO SEND ?
NO

YES

SEND NEXT DATA

INDICATE ERROR

VERIFY DATA RECEIVED ?
NO

YES

VERIFY DATA CORRECT ?
NO

YES

MORE TO VERIFY ?

NO

YES

DONE

PROGRAM CONTINUES
AS LONG AS DATA

IS RECEIVED

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[3]

[4]

[5]

[6]

[7]

PROGRAM Utility in MCU Driver Program in HOST
AN1060 — Rev. 1.0

MOTOROLA 15

Application Note
Allowing for Bootstrap Mode

Since bootstrap mode requires few connections to the MCU, it is easy to
design systems that accommodate bootstrap mode.

Bootstrap mode is useful for diagnosing or repairing systems that have
failed due to changes in the CONFIG register or failures of the expansion
address/data buses, (rendering programs in external memory useless).
Bootstrap mode can also be used to load information into the EPROM or
EEPROM of an M68HC11 after final assembly of a module. Bootstrap
mode is also useful for performing system checks and calibration
routines. The following paragraphs explain system requirements for use
of bootstrap mode in a product.

Mode Select Pins It must be possible to force the MODA and MODB pins to logic 0, which
implies that these two pins should be pulled up to VDD through resistors
rather than being tied directly to VDD. If mode pins are connected directly
to VDD, it is not possible to force a mode other than the one the MCU is
hard wired for. It is also good practice to use pulldown resistors to VSS
rather than connecting mode pins directly to VSS because it is
sometimes a useful debug aid to attempt reset in modes other than the
one the system was primarily designed for. Physically, this requirement
sometimes calls for the addition of a test point or a wire connected to one
or both mode pins. Mode selection only uses the mode pins while
RESET is active.

RESET It must be possible to initiate a reset while the mode select pins are held
low. In systems where there is no provision for manual reset, it is usually
possible to generate a reset by turning power off and back on.

RxD Pin It must be possible to drive the PD0/RxD pin with serial data from a host
computer (or another MCU). In many systems, this pin is already used
for SCI communications; thus no changes are required.

In systems where the PD0/RxD pin is normally used as a general-
purpose output, a serial signal from the host can be connected to the pin
AN1060 — Rev. 1.0

16 MOTOROLA

Application Note
Allowing for Bootstrap Mode
without resulting in output driver conflicts. It may be important to
consider what the existing logic will do with the SCI serial data instead
of the signals that would have been produced by the PD0 pin. In systems
where the PD0 pin is used normally as a general-purpose input, the
driver circuit that drives the PD0 pin must be designed so that the serial
data can override this driver, or the driver must be disconnected during
the bootstrap download. A simple series resistor between the driver and
the PD0 pin solves this problem as shown in Figure 5. The serial data
from the host computer can then be connected to the PD0/RxD pin, and
the series resistor will prevent direct conflict between the host driver and
the normal PD0 driver.

Figure 5. Preventing Driver Conflict

TxD Pin The bootloader program uses the PD1/TxD pin to send verification data
back to the host computer. To minimize the possibility of conflicts with
circuitry connected to this pin, port D is configured for wire-OR mode by
the bootloader program during initialization. Since the wire-OR
configuration prevents the pin from driving active high levels, a pullup
resistor to VDD is needed if the TxD signal is used.

In systems where the PD1/TxD pin is normally used as a general-
purpose output, there are no output driver conflicts. It may be important
to consider what the existing logic will do with the SCI serial data instead
of the signals that would have been produced by the PD1 pin.

In systems where the PD1 pin is normally used as a general-purpose
input, the driver circuit that drives the PD1 pin must be designed so that
the PD1/TxD pin driver in the MCU can override this driver. A simple
series resistor between the driver and the PD1 pin can solve this
problem. The TxD pin can then be configured as an output, and the

A
A
A
AAAA

RxD/PD0
(BEING USED
AS INPUT)

EXISTING
CONTROL

SIGNAL SERIES
RESISTOR

RS232
LEVEL

SHIFTER

FROM
HOST

SYSTEM
MC68HC11

EXISTING
DRIVER

CONNECTED ONLY DURING
BOOTLOADING
AN1060 — Rev. 1.0

MOTOROLA 17

Application Note
series resistor will prevent direct conflict between the internal TxD driver
and the external driver connected to PD1 through the series resistor.

Other The bootloader firmware sets the DWOM control bit, which configures all
port D pins for wire-OR operation. During the bootloading process, all
port D pins except the PD1/TxD pin are configured as high-impedance
inputs. Any port D pin that normally is used as an output should have a
pullup resistor so it does not float during the bootloading process.

Driving Boot Mode from Another M68HC11

A second M68HC11 system can easily act as the host to drive bootstrap
loading of an M68HC11 MCU. This method is used to examine and
program non-volatile memories in target M68HC11s in Motorola EVMs.
The following hardware and software example will demonstrate this and
other bootstrap mode features.

The schematic in Figure 6 shows the circuitry for a simple EPROM
duplicator for the MC68HC711E9. The circuitry is built in the wire-wrap
area of an M68HC11EVBU evaluation board to simplify construction.
The schematic shows only the important portions of the EVBU circuitry
to avoid confusion. To see the complete EVBU schematic, refer to the
M68HC11EVBU Universal Evaluation Board User’s Manual, Motorola
document order number M68HC11EVBU/D.

The default configuration of the EVBU must be changed to make the
appropriate connections to the circuitry in the wire-wrap area and to
configure the master MCU for bootstrap mode. A fabricated jumper must
be installed at J6 to connect the XTAL output of the master MCU to the
wire-wrap connector P5, which has been wired to the EXTAL input of the
target MCU. Cut traces that short across J8 and J9 must be cut on the
solder side of the printed circuit board to disconnect the normal SCI
connections to the RS232 level translator (U4) of the EVBU. The J8 and
J9 connections can be restored easily at a later time by installing
fabricated jumpers on the component side of the board. A fabricated
AN1060 — Rev. 1.0

18 MOTOROLA

Application Note
Driving Boot Mode from Another M68HC11
jumper must be installed across J3 to configure the master MCU for
bootstrap mode.

One MC68HC711E9 is first programmed by other means with a desired
12-Kbyte program in its EPROM and a small duplicator program in its
EEPROM. Alternately, the ROM program in an MC68HC11E9 can be
copied into the EPROM of a target MC68HC711E9 by programming only
the duplicator program into the EEPROM of the master MC68HC11E9.
The master MCU is installed in the EVBU at socket U3. A blank
MC68HC711E9 to be programmed is placed in the socket in the wire-
wrap area of the EVBU (U6).

With the VPP power switch off, power is applied to the EVBU system. As
power is applied to the EVBU, the master MCU (U3) comes out of reset
in bootstrap mode. Target MCU (U6) is held in reset by the PB7 output
of master MCU (U3). The PB7 output of U3 is forced to 0 when U3 is
reset. The master MCU will later release the reset signal to the target
MCU under software control. The RxD and TxD pins of the target MCU
(U6) are high-impedance inputs while U6 is in reset so they will not affect
the TxD and RxD signals of the master MCU (U3) while U3 is coming out
of reset. Since the target MCU is being held in reset with MODA and
MODB at 0, it is configured for the PROG EPROM emulation mode, and
PB7 is the output enable signal for the EPROM data I/O (input/output)
pins. Pullup resistor R7 causes the port D pins, including RxD and TxD,
to remain in the high-impedance state so they do not interfere with the
RxD and TxD pins of the master MCU as it comes out of reset.

As U3 leaves reset, its mode pins select bootstrap mode so the
bootloader firmware begins executing. A break is sent out the TxD pin of
U3. Pullup resistor R10 and resistor R9 cause the break character to be
seen at the RxD pin of U3. The bootloader performs a jump to the start
of EEPROM in the master MCU (U3) and starts executing the duplicator
program. This sequence demonstrates how to use bootstrap mode to
pass control to the start of EEPROM after reset.

The complete listing for the duplicator program in the EEPROM of the
master MCU is provided in Listing 1. MCU-to-MCU Duplicator
Program.
AN1060 — Rev. 1.0

MOTOROLA 19

Application Note
Figure 6. MCU-to-MCU EPROM Duplicator Schematic

A
A
A
A

A
A
A
A

100

R11

OFF

ON

VPP

S2

+

C18
20 µ F

R14
15K

R15
10K

1KR12 RED
D5

1KR13 GREEN
D6

V DD

C17
0.1 µ F

3.3K

R8

J8 J9

R10
15K

R9
10K

V DD V DD

10KR7
PB7

RxD

EXTAL

TxD

MODA

MODB

VDD

VSS

XIRQ/V PPE

RESET

MC68HC711E9

TARGET
MCU
U6

J6

J3

TO/FROM
RS232 LEVEL
TRANSLATOR

U4

PB7

RxD

XTAL

TxD

MODB

PB0

PB1

PE7

17

21

7

20

1

26

35

20

8

21

42

41

50

18

35

3

2

35

20

8

21

42

41

50

+12.25VCOM

AAAAAAAAAAAAAAAAAAAAAAA

A
A
A
A
A

A
A
A
A

A
A

A

A
A

A
A
A

A
A

A
A
A
A
A
A
A

P5P4

WIRE-WRAP AREA

M68HC11EVBU

PREWIRED AREA

35

20

8

21

42

41

50

2

MASTER
MCU
U3

[1]

[2]
AN1060 — Rev. 1.0

20 MOTOROLA

Application Note
Driving Boot Mode from Another M68HC11
The duplicator program in EEPROM clears the DWOM control bit to
change port D (thus, TxD) of U3 to normal driven outputs. This
configuration will prevent interference due to R9 when TxD from the
target MCU (U6) becomes active. Series resistor R9 demonstrates how
TxD of U3 can drive RxD of U3[1] and later TxD of U6 can drive RxD of
U3 without a destructive conflict between the TxD output buffers.

As the target MCU (U6) leaves reset, its mode pins select bootstrap
mode so the bootloader firmware begins executing. A break is sent out
the TxD pin of U6. At this time, the TxD pin of U3 is at a driven high so
R9 acts as a pullup resistor for TxD of the target MCU (U6). The break
character sent from U6 is received by U3 so the duplicator program that
is running in the EEPROM of the master MCU knows that the target
MCU is ready to accept a bootloaded program.

The master MCU sends a leading $FF character to set the baud rate in
the target MCU. Next, the master MCU passes a 3-instruction program
to the target MCU and pauses so the bootstrap program in the target
MCU will stop the loading process and jump to the start of the
downloaded program. This sequence demonstrates the variable-length
download feature of the MC68HC711E9 bootloader.

The short program downloaded to the target MCU clears the DWOM bit
to change its TxD pin to a normal driven CMOS output and jumps to the
EPROM programming utility in the bootstrap ROM of the target MCU.

Note that the small downloaded program did not have to set up the SCI
or initialize any parameters for the EPROM programming process. The
bootstrap software that ran prior to the loaded program left the SCI
turned on and configured in a way that was compatible with the SCI in
the master MCU (the duplicator program in the master MCU also did not
have to set up the SCI for the same reason). The programming time and
starting address for EPROM programming in the target MCU were also
set to default values by the bootloader software before jumping to the
start of the downloaded program.

Before the EPROM in the target MCU can be programmed, the VPP
power supply must be available at the XIRQ/VPPE pin of the target MCU.
The duplicator program running in the master MCU monitors this voltage
(for presence or absence, not level) at PE7 through resistor divider
AN1060 — Rev. 1.0

MOTOROLA 21

Application Note
R14–Rl5. The PE7 input was chosen because the internal circuitry for
port E pins can tolerate voltages slightly higher than VDD; therefore,
resistors R14 and R15 are less critical. No data to be programmed is
passed to the target MCU until the master MCU senses that VPP has
been stable for about 200 ms.

When VPP is ready, the master MCU turns on the red LED (light-emitting
diode) and begins passing data to the target MCU. EPROM
Programming Utility explains the activity as data is sent from the
master MCU to the target MCU and programmed into the EPROM of the
target. The master MCU in the EVBU corresponds to the HOST in the
programming utility description and the "PROGRAM utility in MCU" is
running in the bootstrap ROM of the target MCU.

Each byte of data sent to the target is programmed and then the
programmed location is read and sent back to the master for verification.
If any byte fails, the red and green LEDs are turned off, and the
programming operation is aborted. If the entire 12 Kbytes are
programmed and verified successfully, the red LED is turned off, and the
green LED is turned on to indicate success. The programming of all
12 Kbytes takes about 30 seconds.

After a programming operation, the VPP switch (S2) should be turned off
before the EVBU power is turned off.

Figure 7. Isolating EVBU XIRQ Pin

25
13

1

1
1
3 +

9
8
10

20
21

19

15

71

245

48 47

46
44

41
38

34
35 33 27

28

42
50

CUT TRACE
AS SHOWN

RN1D
47K

V
DD

J14

J7

TO
MC68HC68T1

REMOVE J7
JUMPER

BE SURE NO
JUMPER IS

ON J14

FROM OC5 PIN
OF MCU

TO MCU
XIRQ/V

PIN PPE

P4-18

P5-18

TO MCU
XIRQ/VPPE

PIN
AN1060 — Rev. 1.0

22 MOTOROLA

Application Note
Listing 1. MCU-to-MCU Duplicator Program
Listing 1. MCU-to-MCU Duplicator Program

 1 **
 2 * 68HC711E9 Duplicator Program for AN1060
 3 **
 4
 5 *****
 6 * Equates - All reg addrs except INIT are 2-digit
 7 * for direct addressing
 8 *****
 9 103D INIT EQU $103D RAM, Reg mapping
 10 0028 SPCR EQU $28 DWOM in bit-5
 11 0004 PORTB EQU $04 Red LED = bit-1, Grn = bit-0
 12 * Reset of prog socket = bit-7
 13 0080 RESET EQU %10000000
 14 0002 RED EQU %00000010
 15 0001 GREEN EQU %00000001
 16 000A PORTE EQU $0A Vpp Sense in bit-7, 1=ON
 17 002E SCSR EQU $2E SCI status register
 18 * TDRE, TC, RDRF, IDLE; OR, NF, FE, -
 19 0080 TDRE EQU %10000000
 20 0020 RDRF EQU %00100000
 21 002F SCDR EQU $2F SCI data register
 22 BF00 PROGRAM EQU $BF00 EPROM prog utility in boot ROM
 23 D000 EPSTRT EQU $D000 Starting address of EPROM
 24
 25 B600 ORG $B600 Start of EEPROM
 26
 27 **
 28 *
 29 B600 7F103D BEGIN CLR INIT Moves Registers to $0000-3F
 30 B603 8604 LDAA #$04 Pattern for DWOM off, no SPI
 31 B605 9728 STAA SPCR Turns off DWOM in EVBU MCU
 32 B607 8680 LDAA #RESET
 33 B609 9704 STAA PORTB Release reset to target MCU
 34 B60B 132E20FC WT4BRK BRCLR SCSR RDRF WT4BRK Loop till char received
 35 B60F 86FF LDAA #$FF Leading char for bootload ...
 36 B611 972F STAA SCDR to target MCU
 37 B613 CEB675 LDX #BLPROG Point at program for target
 38 B616 8D53 BLLOOP BSR SEND1 Bootload to target
 39 B618 8CB67D CPX #ENDBPR Past end ?
 40 B61B 26F9 BNE BLLOOP Continue till all sent
 41 *****
 42 * Delay for about 4 char times to allow boot related
 43 * SCI communications to finish before clearing
 44 * Rx related flags
 45 B61D CE06A7 LDX #1703 # of 6 cyc loops
 46 B620 09 DLYLP DEX [3]
 47 B621 26FD BNE DLYLP [3] Total loop time = 6 cyc
 48 B623 962E LDAA SCSR Read status (RDRF will be set)
 49 B625 962F LDAA SCDR Read SCI data reg to clear RDRF
AN1060 — Rev. 1.0

MOTOROLA 23

Application Note
 50 *****
 51 * Now wait for character from target to indicate it's ready for
 52 * data to be programmed into EPROM
 53 B627 132E20FC WT4FF BRCLR SCSR RDRF WT4FF Wait for RDRF
 54 B62B 962F LDAA SCDR Clear RDRF, don't need data
 55 B62D CED000 LDX #EPSTRT Point at start of EPROM
 56 * Handle turn-on of Vpp
 57 B630 18CE523D WT4VPP LDY #21053 Delay counter (about 200ms)
 58 B634 150402 BCLR PORTB RED Turn off RED LED
 59 B637 960A DLYLP2 LDAA PORTE [3] Wait for Vpp to be ON
 60 B639 2AF5 BPL WT4VPP [3] Vpp sense is on port E MSB
 61 B63B 140402 BSET PORTB RED [6] Turn on RED LED
 62 B63E 1809 DEY [4]
 63 B640 26F5 BNE DLYLP2 [3] Total loop time = 19 cyc
 64 * Vpp has been stable for 200ms
 65
 66 B642 18CED000 LDY #EPSTRT X=Tx pointer, Y=verify pointer
 67 B646 8D23 BSR SEND1 Send first data to target
 68 B648 8C0000 DATALP CPX #0 X points at $0000 after last
 69 B64B 2702 BEQ VERF Skip send if no more
 70 B64D 8D1C BSR SEND1 Send another data char
 71 B64F 132E20FC VERF BRCLR SCSR RDRF VERF Wait for Rx ready
 72 B653 962F LDAA SCDR Get char and clr RDRF
 73 B655 18A100 CMPA 0,Y Does char verify ?
 74 B658 2705 BEQ VERFOK Skip error if OK
 75 B65A 150403 BCLR PORTB (RED+GREEN) Turn off LEDs
 76 B65D 2007 BRA DUNPRG Done (programming failed)
 77 B65F
 78 B65F 1808 VERFOK INY Advance verify pointer
 79 B661 26E5 BNE DATALP Continue till all done
 80 B663
 81 B663 140401 BSET PORTB GREEN Grn LED ON
 82 B666
 83 B666 150482 DUNPRG BCLR PORTB (RESET+RED) Red OFF, apply reset
 84 B669 20FE BRA * Done so just hang
 85 B66B
 86 **
 87 * Subroutine to get & send an SCI char. Also
 88 * advances pointer (X).
 89 **
 90 B66B A600 SEND1 LDAA 0,X Get a character
 91 B66D 132E80FC TRDYLP BRCLR SCSR TDRE TRDYLP Wait for TDRE
 92 B671 972F STAA SCDR Send character
 93 B673 08 INX Advance pointer
 94 B674 39 RTS ** Return **
 95
AN1060 — Rev. 1.0

24 MOTOROLA

Application Note
Listing 1. MCU-to-MCU Duplicator Program
 96 **
 97 * Program to be bootloaded to target '711E9
 98 **
 99 B675 8604 BLPROG LDAA #$04 Pattern for DWOM off, no SPI
100 B677 B71028 STAA $1028 Turns off DWOM in target MCU
101 * NOTE: Can't use direct addressing in target MCU because
102 * regs are located at $1000.
103 B67A 7EBF00 JMP PROGRAM Jumps to EPROM prog routine
104 B67D ENDBPR EQU *

Symbol Table:
Symbol Name Value Def.# Line Number Cross Reference

BEGIN B600 *00029
BLLOOP B616 *00038 00040
BLPROG B675 *00099 00037
DATALP B648 *00068 00079
DLYLP B620 *00046 00047
DLYLP2 B637 *00059 00063
DUNPRG B666 *00083 00076
ENDBPR B67D *00104 00039
EPSTRT D000 *00023 00055 00066
GREEN 0001 *00015 00075 00081
INIT 103D *00009 00029
PORTB 0004 *00011 00033 00058 00061 00075 00081 00083
PORTE 000A *00016 00059
PROGRAM BF00 *00022 00103
RDRF 0020 *00020 00034 00053 00071
RED 0002 *00014 00058 00061 00075 00083
RESET 0080 *00013 00032 00083
SCDR 002F *00021 00036 00049 00054 00072 00092
SCSR 002E *00017 00034 00048 00053 00071 00091
SEND1 B66B *00090 00038 00067 00070
SPCR 0028 *00010 00031
TDRE 0080 *00019 00091
TRDYLP B66D *00091 00091
VERF B64F *00071 00069 00071
VERFOK B65F *00078 00074
WT4BRK B60B *00034 00034
WT4FF B627 *00053 00053
WT4VPP B630 *00057 00060

 Errors: None
 Labels: 28
 Last Program Address: $B67C
 Last Storage Address: $0000
 Program Bytes: $007D 125
 Storage Bytes: $0000 0
AN1060 — Rev. 1.0

MOTOROLA 25

Application Note
Driving Boot Mode from a Personal Computer

In this example, a personal computer is used as the host to drive the
bootloader of an MC68HC711E9. An M68HC11 EVBU is used for the
target MC68HC711E9. A large program is transferred from the personal
computer into the EPROM of the target MC68HC711E9.

Hardware Figure 7 shows a small modification to the EVBU to accommodate the
12-volt (nominal) EPROM programming voltage. The XIRQ pin is
connected to a pullup resistor, two jumpers, and the 60-pin connectors,
P4 and P5. The object of the modification is to isolate the XIRQ pin and
then connect it to the programming power supply. Carefully cut the trace
on the solder side of the EVBU as indicated in Figure 7. This
disconnects the pullup resistor RN1 D from XIRQ but leaves P4–18,
P5–18, and jumpers J7 and J14 connected so the EVBU can still be
used for other purposes after programming is done. Remove any
fabricated jumpers from J7 and J14. The EVBU normally has a jumper
at J7 to support the trace function

Figure 8 shows a small circuit that is added to the wire-wrap area of the
EVBU. The 3-terminal jumper allows the XIRQ line to be connected to
either the programming power supply or to a substitute pullup resistor for
XIRQ. The 100-ohm resistor is a current limiter to protect the 12-volt
input of the MCU. The resistor and LED connected to P5 pin 9 (port C
bit 0) is an optional indicator that lights when programming is complete.

Software BASIC was chosen as the programming language due to its readability
and availability in parallel versions on both the IBM PC and the
Macintosh . The program demonstrates several programming
techniques for use with an M68HC11 and is not necessarily intended to
be a finished, commercial program. For example, there is little error
checking, and the user interface is elementary. A complete listing of the
BASIC program is included in Listing 2. BASIC Program for Personal
Computer with moderate comments. The following paragraphs include

 IBM is a registered trademark of International Business Machines.
 Macintosh is a registered trademark of Apple Computers, Inc.
AN1060 — Rev. 1.0

26 MOTOROLA

Application Note
Driving Boot Mode from a Personal Computer
a more detailed discussion of the program as it pertains to
communicating with and programming the target MC68HC711E9. Lines
25–45 initialize and define the variables and array used in the program.
Changes to this section would allow for other programs to be
downloaded.

Figure 8. PC-to-MCU Programming Circuit

Lines 50–95 read in the small bootloader from DATA statements at the
end of the listing. The source code for this bootloader is presented in the
DATA statements. The bootloaded code makes port C bit 0 low,
initializes the X and Y registers for use by the EPROM programming
utility routine contained in the boot ROM, and then jumps to that routine.
The hexadecimal values read in from the DATA statements are
converted to binary values by a subroutine. The binary values are then
saved as one string (BOOTCODE$).

The next long section of code (lines 97–1250) reads in the S records
from an external disk file (in this case, BUF34.S19), converts them to
integer, and saves them in an array. The techniques used in this section
show how to convert ASCII S records to binary form that can be sent
(bootloaded) to an M68HC11.

100

NORMAL EVBU
OPERATION

JUMPER+
20 µ F

+12.25 V

COMMON

PROGRAMMING
POWER

47K

VDD

PROGRAM
EPROM

1K
PC0

P5-9 LED

TO P5-18
(XIRQ/V)

PPE
AN1060 — Rev. 1.0

MOTOROLA 27

Application Note
This S-record translator only looks for the S1 records that contain the
actual object code. All other S-record types are ignored.

When an S1 record is found (lines 1000–1024), the next two characters
form the hex byte giving the number of hex bytes to follow. This byte is
converted to integer by the same subroutine that converted the
bootloaded code from the DATA statements. This BYTECOUNT is
adjusted by subtracting 3, which accounts for the address and checksum
bytes and leaves just the number of object-code bytes in the record.

Starting at line 1100, the 2-byte (4-character) starting address is
converted to decimal. This address is the starting address for the object
code bytes to follow. An index into the CODE% array is formed by
subtracting the base address initialized at the start of the program from
the starting address for this S record.

A FOR-NEXT loop starting at line 1130 converts the object code bytes
to decimal and saves them in the CODE% array. When all the object
code bytes have been converted from the current S record, the program
loops back to find the next S1 record.

A problem arose with the BASIC programming technique used. The draft
versions of this program tried saving the object code bytes directly as
binary in a string array. This caused "Out of Memory" or "Out of String
Space" errors on both a 2-Mbyte Macintosh and a 640-Kbyte PC. The
solution was to make the array an integer array and perform the integer-
to-binary conversion on each byte as it is sent to the target part.

The one compromise made to accommodate both Macintosh and PC
versions of BASIC is in lines 1500 and 1505. Use line 1500 and
comment out line 1505 if the program is to be run on a Macintosh, and,
conversely, use line 1505 and comment out line 1500 if a PC is used.

After the COM port is opened, the code to be bootloaded is modified by
adding the $FF to the start of the string. $FF synchronizes the
bootloader in the MC68HC711E9 to 1200 baud. The entire string is
simply sent to the COM port by PRINTing the string. This is possible
since the string is actually queued in BASIC’s COM buffer, and the
operating system takes care of sending the bytes out one at a time. The
M68HC11 echoes the data received for verification. No automatic
AN1060 — Rev. 1.0

28 MOTOROLA

Application Note
Driving Boot Mode from a Personal Computer
verification is provided, though the data is printed to the screen for
manual verification.

Once the MCU has received this bootloaded code, the bootloader
automatically jumps to it. The small bootloaded program in turn includes
a jump to the EPROM programming routine in the boot ROM.

Refer to the previous explanation of the EPROM Programming Utility
for the following discussion. The host system sends the first byte to be
programmed through the COM port to the SCI of the MCU. The SCI port
on the MCU buffers one byte while receiving another byte, increasing the
throughput of the EPROM programming operation by sending the
second byte while the first is being programmed.

When the first byte has been programmed, the MCU reads the EPROM
location and sends the result back to the host system. The host then
compares what was actually programmed to what was originally sent. A
message indicating which byte is being verified is displayed in the lower
half of the screen. If there is an error, it is displayed at the top of the
screen.

As soon as the first byte is verified, the third byte is sent. In the
meantime, the MCU has already started programming the second byte.
This process of verifying and queueing a byte continues until the host
finishes sending data. If the programming is completely successful, no
error messages will have been displayed at the top of the screen.
Subroutines follow the end of the program to handle some of the
repetitive tasks. These routines are short, and the commenting in the
source code should be sufficient explanation.
AN1060 — Rev. 1.0

MOTOROLA 29

Application Note
Modifications This example programmed version 3.4 of the BUFFALO monitor into the
EPROM of an MC68HC711E9; the changes to the BASIC program to
download some other program are minor.

The necessary changes are:

1. In line 30, the length of the program to be downloaded must be
assigned to the variable CODESIZE%.

2. Also in line 30, the starting address of the program is assigned to
the variable ADRSTART.

3. In line 9570, the start address of the program is stored in the third
and fourth items in that DATA statement in hexadecimal.

4. If any changes are made to the number of bytes in the boot code
in the DATA statements in lines 9500–9580, then the new count
must be set in the variable "BOOTCOUNT" in line 25.

Operation Configure the EVBU for boot mode operation by putting a jumper at J3.
Ensure that the trace command jumper at J7 is not installed because this
would connect the 12-V programming voltage to the OC5 output of the
MCU.

Connect the EVBU to its dc power supply. When it is time to program the
MCU EPROM, turn on the 12-volt programming power supply to the new
circuitry in the wire-wrap area.

Connect the EVBU serial port to the appropriate serial port on the host
system. For the Macintosh, this is the modem port with a modem cable.
For the MS-DOS computer, it is connected to COM1 with a straight
through or modem cable. Power up the host system and start the BASIC
program. If the program has not been compiled, this is accomplished
from within the appropriate BASIC compiler or interpreter. Power up the
EVBU.

Answer the prompt for filename with either a [RETURN] to accept the
default shown or by typing in a new filename and pressing [RETURN].

 MS-DOS is a registered trademark of Microsoft Corporation in the United States and other
countries.
AN1060 — Rev. 1.0

30 MOTOROLA

Application Note
Driving Boot Mode from a Personal Computer
The program will inform the user that it is working on converting the file
from S records to binary. This process will take from 30 seconds to a few
minutes, depending on the computer.

A prompt reading, "Comm port open?" will appear at the end of the file
conversion. This is the last chance to ensure that everything is properly
configured on the EVBU. Pressing [RETURN] will send the bootcode to
the target MC68HC711E9. The program then informs the user that the
bootload code is being sent to the target, and the results of the echoing
of this code are displayed on the screen.

Another prompt reading "Programming is ready to begin. Are you?" will
appear. Turn on the 12-volt programming power supply and press
[RETURN] to start the actual programming of the target EPROM.

A count of the byte being verified will be updated continually on the
screen as the programming progresses. Any failures will be flagged as
they occur.

When programming is complete, a message will be displayed as well as
a prompt requesting the user to press [RETURN] to quit.

Turn off the 12-volt programming power supply before turning off 5 volts
to the EVBU.
AN1060 — Rev. 1.0

MOTOROLA 31

Application Note
Listing 2. BASIC Program for Personal Computer

1 ' ***
2 ' *
3 ' * E9BUF.BAS - A PROGRAM TO DEMONSTRATE THE USE OF THE BOOT MODE
4 ' * ON THE HC11 BY PROGRAMMING AN HC711E9 WITH
5 ' * BUFFALO 3.4
6 ' *
7 ' * REQUIRES THAT THE S-RECORDS FOR BUFFALO (BUF34.S19)
8 ' * BE AVAILABLE IN THE SAME DIRECTORY OR FOLDER
9 ' *
10 '* THIS PROGRAM HAS BEEN RUN BOTH ON A MS-DOS COMPUTER
11 '* USING QUICKBASIC 4.5 AND ON A MACINTOSH USING
12 '* QUICKBASIC 1.0.
14 '*
15 '**
25 H$ = "0123456789ABCDEF" 'STRING TO USE FOR HEX CONVERSIONS
30 DEFINT B, I: CODESIZE% = 8192: ADRSTART= 57344!
35 BOOTCOUNT = 25 'NUMBER OF BYTES IN BOOT CODE
40 DIM CODE%(CODESIZE%) 'BUFFALO 3.4 IS 8K BYTES LONG
45 BOOTCODE$ = "" 'INITIALIZE BOOTCODE$ TO NULL
49 REM ***** READ IN AND SAVE THE CODE TO BE BOOT LOADED *****
50 FOR I = 1 TO BOOTCOUNT '# OF BYTES IN BOOT CODE
55 READ Q$
60 A$ = MID$(Q$, 1, 1)
65 GOSUB 7000 'CONVERTS HEX DIGIT TO DECIMAL
70 TEMP = 16 * X 'HANG ON TO UPPER DIGIT
75 A$ = MID$(Q$, 2, 1)
80 GOSUB 7000
85 TEMP = TEMP + X
90 BOOTCODE$ = BOOTCODE$ + CHR$(TEMP) 'BUILD BOOT CODE
95 NEXT I
96 REM ***** S-RECORD CONVERSION STARTS HERE *****
97 FILNAM$="BUF34.S19" 'DEFAULT FILE NAME FOR S-RECORDS
100 CLS
105 PRINT "Filename.ext of S-record file to be downloaded (";FILNAM$;") ";
107 INPUT Q$
110 IF Q$<>"" THEN FILNAM$=Q$
120 OPEN FILNAM$ FOR INPUT AS #1
130 PRINT : PRINT "Converting "; FILNAM$; " to binary..."
999 REM ***** SCANS FOR 'S1' RECORDS *****
1000 GOSUB 6000 'GET 1 CHARACTER FROM INPUT FILE
1010 IF FLAG THEN 1250 'FLAG IS EOF FLAG FROM SUBROUTINE
1020 IF A$ <> "S" THEN 1000
1022 GOSUB 6000
1024 IF A$ <> "1" THEN 1000
1029 REM ***** S1 RECORD FOUND, NEXT 2 HEX DIGITS ARE THE BYTE COUNT *****
1030 GOSUB 6000
1040 GOSUB 7000 'RETURNS DECIMAL IN X
AN1060 — Rev. 1.0

32 MOTOROLA

Application Note
Listing 2. BASIC Program for Personal Computer
1050 BYTECOUNT = 16 * X 'ADJUST FOR HIGH NIBBLE
1060 GOSUB 6000
1070 GOSUB 7000
1080 BYTECOUNT = BYTECOUNT + X 'ADD LOW NIBBLE
1090 BYTECOUNT = BYTECOUNT - 3 'ADJUST FOR ADDRESS + CHECKSUM
1099 REM ***** NEXT 4 HEX DIGITS BECOME THE STARTING ADDRESS FOR THE DATA *****
1100 GOSUB 6000 'GET FIRST NIBBLE OF ADDRESS
1102 GOSUB 7000 'CONVERT TO DECIMAL
1104 ADDRESS= 4096 * X
1106 GOSUB 6000 'GET NEXT NIBBLE
1108 GOSUB 7000
1110 ADDRESS= ADDRESS+ 256 * X
1112 GOSUB 6000
1114 GOSUB 7000
1116 ADDRESS= ADDRESS+ 16 * X
1118 GOSUB 6000
1120 GOSUB 7000
1122 ADDRESS= ADDRESS+ X
1124 ARRAYCNT = ADDRESS-ADRSTART 'INDEX INTO ARRAY
1129 REM ***** CONVERT THE DATA DIGITS TO BINARY AND SAVE IN THE ARRAY *****
1130 FOR I = 1 TO BYTECOUNT
1140 GOSUB 6000
1150 GOSUB 7000
1160 Y = 16 * X 'SAVE UPPER NIBBLE OF BYTE
1170 GOSUB 6000
1180 GOSUB 7000
1190 Y = Y + X 'ADD LOWER NIBBLE
1200 CODE%(ARRAYCNT) = Y 'SAVE BYTE IN ARRAY
1210 ARRAYCNT = ARRAYCNT + 1 'INCREMENT ARRAY INDEX
1220 NEXT I
1230 GOTO 1000
1250 CLOSE 1
1499 REM ***** DUMP BOOTLOAD CODE TO PART *****
1500 'OPEN "R",#2,"COM1:1200,N,8,1" 'Macintosh COM statement
1505 OPEN "COM1:1200,N,8,1,CD0,CS0,DS0,RS" FOR RANDOM AS #2 'DOS COM statement
1510 INPUT "Comm port open"; Q$
1512 WHILE LOC(2) >0 'FLUSH INPUT BUFFER
1513 GOSUB 8020
1514 WEND
1515 PRINT : PRINT "Sending bootload code to target part..."
1520 A$ = CHR$(255) + BOOTCODE$ 'ADD HEX FF TO SET BAUD RATE ON TARGET HC11
1530 GOSUB 6500
1540 PRINT
1550 FOR I = 1 TO BOOTCOUNT '# OF BYTES IN BOOT CODE BEING ECHOED
1560 GOSUB 8000
1564 K=ASC(B$):GOSUB 8500
1565 PRINT "Character #"; I; " received = "; HX$
1570 NEXT I
1590 PRINT "Programming is ready to begin.": INPUT "Are you ready"; Q$
1595 CLS
1597 WHILE LOC(2) > 0 'FLUSH INPUT BUFFER
AN1060 — Rev. 1.0

MOTOROLA 33

Application Note
1598 GOSUB 8020
1599 WEND
1600 XMT = 0: RCV = 0 'POINTERS TO XMIT AND RECEIVE BYTES
1610 A$ = CHR$(CODE%(XMT))
1620 GOSUB 6500 'SEND FIRST BYTE
1625 FOR I = 1 TO CODESIZE% - 1 'ZERO BASED ARRAY 0 -> CODESIZE-1
1630 A$ = CHR$(CODE%(I)) 'SEND SECOND BYTE TO GET ONE IN QUEUE
1635 GOSUB 6500 'SEND IT
1640 GOSUB 8000 'GET BYTE FOR VERIFICATION
1650 RCV = I - 1
1660 LOCATE 10,1:PRINT "Verifying byte #"; I; " "
1664 IF CHR$(CODE%(RCV)) = B$ THEN 1670
1665 K=CODE%(RCV):GOSUB 8500
1666 LOCATE 1,1:PRINT "Byte #"; I; " ", " - Sent "; HX$;
1668 K=ASC(B$):GOSUB 8500
1669 PRINT " Received "; HX$;
1670 NEXT I
1680 GOSUB 8000 'GET BYTE FOR VERIFICATION
1690 RCV = CODESIZE% - 1
1700 LOCATE 10,1:PRINT "Verifying byte #"; CODESIZE%; " "
1710 IF CHR$(CODE%(RCV)) = B$ THEN 1720
1713 K=CODE(RCV):GOSUB 8500
1714 LOCATE 1,1:PRINT "Byte #"; CODESIZE%; " ", " - Sent "; HX$;
1715 K=ASC(B$):GOSUB 8500
1716 PRINT " Received "; HX$;
1720 LOCATE 8, 1: PRINT : PRINT "Done!!!!"
4900 CLOSE
4910 INPUT "Press [RETURN] to quit...", Q$
5000 END
5900 '***
5910 '* SUBROUTINE TO READ IN ONE BYTE FROM A DISK FILE
5930 '* RETURNS BYTE IN A$
5940 '***
6000 FLAG = 0
6010 IF EOF(1) THEN FLAG = 1: RETURN
6020 A$ = INPUT$(1, #1)
6030 RETURN
6490 '***
6492 '* SUBROUTINE TO SEND THE STRING IN A$ OUT TO THE DEVICE
6494 '* OPENED AS FILE #2.
6496 '***
6500 PRINT #2, A$;
6510 RETURN
6590 '***
6594 '* SUBROUTINE THAT CONVERTS THE HEX DIGIT IN A$ TO AN INTEGER
6596 '***
7000 X = INSTR(H$, A$)
7010 IF X = 0 THEN FLAG = 1
7020 X = X - 1
7030 RETURN
AN1060 — Rev. 1.0

34 MOTOROLA

Application Note
Common Bootstrap Mode Problems
7990 '**
7992 '* SUBROUTINE TO READ IN ONE BYTE THROUGH THE COMM PORT OPENED
7994 '* AS FILE #2. WAITS INDEFINITELY FOR THE BYTE TO BE
7996 '* RECEIVED. SUBROUTINE WILL BE ABORTED BY ANY
7998 '* KEYBOARD INPUT. RETURNS BYTE IN B$. USES Q$.
7999 '**
8000 WHILE LOC(2) = 0 'WAIT FOR COMM PORT INPUT
8005 Q$ = INKEY$: IF Q$ <> "" THEN 4900 'IF ANY KEY PRESSED, THEN ABORT
8010 WEND
8020 B$ = INPUT$(1, #2)
8030 RETURN
8490 '**
8491 '* DECIMAL TO HEX CONVERSION
8492 '* INPUT: K - INTEGER TO BE CONVERTED
8493 '* OUTPUT: HX$ - TWO CHARACTER STRING WITH HEX CONVERSION
8494 '**
8500 IF K > 255 THEN HX$="Too big":GOTO 8530
8510 HX$=MID$(H$,K\16+1,1) 'UPPER NIBBLE
8520 HX$=HX$+MID$(H$,(K MOD 16)+1,1) 'LOWER NIBBLE
8530 RETURN
9499 '******************** BOOT CODE **
9500 DATA 86, 23 'LDAA #$23
9510 DATA B7, 10, 02 'STAA OPT2 make port C wire or
9520 DATA 86, FE 'LDAA #$FE
9530 DATA B7, 10, 03 'STAA PORTC light 1 LED on port C bit 0
9540 DATA C6, FF 'LDAB #$FF
9550 DATA F7, 10, 07 'STAB DDRC make port C outputs
9560 DATA CE, 0F, A0 'LDX #4000 2msec at 2MHz
9570 DATA 18, CE, E0, 00 'LDY #$E000 Start of BUFFALO 3.4
9580 DATA 7E, BF, 00 'JMP $BF00 EPROM routine start address
9590 '***

Common Bootstrap Mode Problems

It is not unusual for a user to encounter problems with bootstrap mode
because it is new to many users. By knowing some of the common
difficulties, the user can avoid them or at least recognize and quickly
correct them.

Reset Conditions
vs. Conditions
as Bootloaded
Program Starts

It is common to confuse the reset state of systems and control bits with
the state of these systems and control bits when a bootloaded program
in RAM starts.
AN1060 — Rev. 1.0

MOTOROLA 35

Application Note
Between these times, the bootloader program is executed, which
changes the states of some systems and control bits:

• The SCI system is initialized and turned on (Rx and Tx).

• The SCI system has control of the PD0 and PD1 pins.

• Port D outputs are configured for wire-OR operation.

• The stack pointer is initialized to the top of RAM.

• Time has passed (two or more SCI character times).

• Timer has advanced from its reset count value.

Users also forget that bootstrap mode is a special mode. Thus,
privileged control bits are accessible, and write protection for some
registers is not in effect. The bootstrap ROM is in the memory map. The
DISR bit in the TEST1 control register is set, which disables resets from
the COP and clock monitor systems.

Since bootstrap is a special mode, these conditions can be changed by
software. The bus can even be switched from single-chip mode to
expanded mode to gain access to external memories and peripherals.

Connecting RxD
to VSS Does Not
Cause the SCI
to Receive a Break

To force an immediate jump to the start of EEPROM, the bootstrap
firmware looks for the first received character to be $00 (or break). The
data reception logic in the SCI looks for a 1-to-0 transition on the RxD
pin to synchronize to the beginning of a receive character. If the RxD pin
is tied to ground, no 1-to-0 transition occurs. The SCI transmitter sends
a break character when the bootloader firmware starts, and this break
character can be fed back to the RxD pin to cause the jump to EEPROM.
Since TxD is configured as an open-drain output, a pullup resistor is
required.

$FF Character Is
Required before
Loading into RAM

The initial character (usually $FF) that sets the download baud rate is
often forgotten.
AN1060 — Rev. 1.0

36 MOTOROLA

A
N

106

M
O

T
O

R
O

LA
37

A
pplication N

ote
C

om
m

on B
ootstrap M

ode P
roblem

s

Table 2. Summary of Boot-ROM-Related Features

ault
M
tion

PROGRAM(3)

and UPLOAD(4)

Utility

Notes

0–FF
0–FF
0–FF
0–FF

—
—
—
—

(5)

(5)
(5)
(5)

0–FF
0–FF

—
Yes

(6)

(6)

0–FF
0–FF

—
—

(5)
(5)

–1FF
–1FF
–1FF
–1FF

—
—
—
—

(5)
(5)
(5)
(5)

–1FF Yes

–3FF — (6), (7)

–37F
–37F

—
Yes

(6), (8)

(6), (8)

ess in this table rather than doing
or from TxD to VDD will cause the

M rather than doing a download.
ownload, the same effect can be
jump (JMP) to the start of RAM is

M with data received via the SCI.
ry to a host computer via the SCI.
er number M68HC11RM/AD.

I, PAIF, PAOVF, TOF, OC5F,
0
—

R
ev. 1.0

MCU Part

BOOT
ROM

Revision
(@$BFD1)

Mask Set
I.D.

(@$BFD2,3)

MCU Type
I.D.

(@$BFD4,5)
Security

Download
Length

JMP on

BRK or $00(1)
JMP

to RAM(2)

Def
RA

Loca

MC68HC11A0
MC68HC11A1
MC68HC11A8
MC68SEC11A8

—
—
—
—

—
—
—
—

Mask set #
Mask set #
Mask set #
Mask set #

—
—
—

Yes

256
256
256
256

$B600
$B600
$B600
$B600

$0000
$0000
$0000
$0000

$000
$000
$000
$000

MC68HC11D3
MC68HC711D3

$00
$42(B)

ROM I.D. #
$0000

$11D3
$71D3

—
—

0–192
0–192

$F000–ROM
$F000–EPROM

—
—

$004
$004

MC68HC811E2
MC68SEC811E2

—
—

$0000
—

$E2E2
$E25C

—
Yes

256
256

$B600
$B600

$0000
$0000

$000
$000

MC68HC11E0
MC68HC11E1
MC68HC11E9
MC68SEC11E9

—
—
—
—

ROM I.D. #
ROM I.D. #
ROM I.D. #
ROM I.D. #

$E9E9
$E9E9
$E9E9
$E95C

—
—
—

Yes

0–512
0–512
0–512
0–512

$B600
$B600
$B600
$B600

—
—
—
—

$0000
$0000
$0000
$0000

MC68HC711E9 $41(A) $0000 $71E9 — 0–512 $B600 — $0000

MC68HC11F1 $42(B) $0000 $F1F1 — 0–1024 $FE00 — $0000

MC68HC11K4
MC68HC711K4

$30(0)
$42(B)

ROM I.D. #
$0000

$044B
$744B

—
—

0–768
0–768

$0D80
$0D80

—
—

$0080
$0080

1. By sending $00 or a break as the first SCI character after reset in bootstrap mode, a jump (JMP) is executed to the addr
a download. Unless otherwise noted, this address is the start of EEPROM. Tying RxD to TxD and using a pullup resist
SCI to see a break as the first received character.

2. If $55 is received as the first character after reset in bootstrap mode, a jump (JMP) is executed to the start of on-chip RA
This $55 character must be sent at the default baud rate (7812 baud @ E = 2 MHz). For devices with variable-length d
achieved by sending $FF and no other SCI characters. After four SCI character times, the download terminates, and a
executed.
The jump to RAM feature is only useful if the RAM was previously loaded with a meaningful program.

3. A callable utility subroutine is included in the bootstrap ROM of the indicated versions to program bytes of on-chip EPRO
4. A callable utility subroutine is included in the bootstrap ROM of the indicated versions to upload contents of on-chip memo
5. The complete listing for this bootstrap ROM may be found in the M68HC11 Reference Manual, Motorola document ord
6. The complete listing for this bootstrap ROM is available in the freeware area of the Motorola Web site.
7. Due to the extra program space needed for EEPROM security on this device, there are no pseudo-vectors for SCI, SP

or OC4F interrupts.
8. This bootloader extends the automatic software detection of baud rates to include 9600 baud at 2-MHz E-clock rate.

Application Note
Original M68HC11
Versions Required
Exactly 256 Bytes
to be Downloaded
to RAM

Even users that know about the 256 bytes of download data sometimes
forget the initial $FF that makes the total number of bytes required for
the entire download operation equal to 256 + 1 or 257 bytes.

Variable-Length
Download

When on-chip RAM surpassed 256 bytes, the time required to serially
load this many characters became more significant. The variable-length
download feature allows shorter programs to be loaded without
sacrificing compatibility with earlier fixed-length download versions of
the bootloader. The end of a download is indicated by an idle RxD line
for at least four character times. If a personal computer is being used to
send the download data to the MCU, there can be problems keeping
characters close enough together to avoid tripping the end-of-download
detect mechanism. Using 1200 as the baud rate rather than the faster
default rate may help this problem.

Assemblers often produce S-record encoded programs which must be
converted to binary before bootloading them to the MCU. The process
of reading S-record data from a file and translating it to binary can be
slow, depending on the personal computer and the programming
language used for the translation. One strategy that can be used to
overcome this problem is to translate the file into binary and store it into
a RAM array before starting the download process. Data can then be
read and downloaded without the translation or file-read delays.

The end-of-download mechanism goes into effect when the initial $FF is
received to set the baud rate. Any amount of time may pass between
reset and when the $FF is sent to start the download process.

EPROM/OTP
Versions
of M68HC11
Have an EPROM
Emulation Mode

The conditions that configure the MCU for EPROM emulation mode are
essentially the same as those for resetting the MCU in bootstrap mode.
While RESET is low and mode select pins are configured for bootstrap
mode (low), the MCU is configured for EPROM emulation mode.
AN1060 — Rev. 1.0

38 MOTOROLA

Application Note
Common Bootstrap Mode Problems
The port pins that are used for EPROM data I/O lines may be inputs or
outputs, depending on the pin that is emulating the EPROM output
enable pin (OE). To make these data pins appear as high-impedance
inputs as they would on a non-EPROM part in reset, connect the
PB7/(OE) pin to a pullup resistor.

Bootloading
a Program
to Perform
a ROM Checksum

The bootloader ROM must be turned off before performing the
checksum program. To remove the boot ROM from the memory map,
clear the RBOOT bit in the HPRIO register. This is normally a write-
protected bit that is 0, but in bootstrap mode it is reset to 1 and can be
written. If the boot ROM is not disabled, the checksum routine will read
the contents of the boot ROM rather than the user’s mask ROM or
EPROM at the same addresses.

Inherent Delays
Caused
by Double
Buffering
of SCI Data

This problem is troublesome in cases where one MCU is bootloading to
another MCU.

Because of transmitter double buffering, there may be one character in
the serial shifter as a new character is written into the transmit data
register. In cases such as downloading in which this 2-character pipeline
is kept full, a 2-character time delay occurs between when a character is
written to the transmit data register and when that character finishes
transmitting. A little more than one more character time delay occurs
between the target MCU receiving the character and echoing it back. If
the master MCU waits for the echo of each downloaded character before
sending the next one, the download process takes about twice as long
as it would if transmission is treated as a separate process or if verify
data is ignored.
AN1060 — Rev. 1.0

MOTOROLA 39

Application Note
Boot ROM Variations

Different versions of the M68HC11 have different versions of the
bootstrap ROM program. Table 3 summarizes the features of the boot
ROMs in 16 members of the M68HC11 Family.

The boot ROMs for the MC68HC11F1, the MC68HC711K4, and the
MC68HC11K4 allow additional choices of baud rates for bootloader
communications. For the three new baud rates, the first character used
to determine the baud rate is not $FF as it was in earlier M68HC11s. The
intercharacter delay that terminates the variable-length download is also
different for these new baud rates. Table 3 shows the synchronization
characters, delay times, and baud rates as they relate to E-clock
frequency.

Commented Boot ROM Listing

Listing 3. MC68HC711E9 Bootloader ROM contains a complete
commented listing of the boot ROM program in the MC68HC711E9
version of the M68HC11. Other versions can be found in Appendix B of
the M68HC11 Reference Manual and in the freeware area of the
Motorola Web site.

Table 3. Bootloader Baud Rates

Sync
Character

Timeout
Delay

Baud Rates at E Clock =

2 MHz 2.1 MHz 3 MHz 3.15 MHz 4 MHz 4.2 MHz

$FF 4 characters 7812 8192 11,718 12,288 15,624 16,838

$FF 4 characters 1200 1260 1800 1890 2400 2520

$F0 4.9 characters 9600 10,080 14,400 15,120 19,200 20,160

$FD 17.3 characters 5208 5461 7812 8192 10,416 10,922

$FD 13 characters 3906 4096 5859 6144 7812 8192
AN1060 — Rev. 1.0

40 MOTOROLA

Application Note
Listing 3. MC68HC711E9 Bootloader ROM
Listing 3. MC68HC711E9 Bootloader ROM

 1 **
 2 * BOOTLOADER FIRMWARE FOR 68HC711E9 - 21 Aug 89
 3 **
 4 * Features of this bootloader are...
 5 *
 6 * Auto baud select between 7812.5 and 1200 (8 MHz)
 7 * 0 - 512 byte variable length download
 8 * Jump to EEPROM at $B600 if 1st download byte = $00
 9 * PROGRAM - Utility subroutine to program EPROM
 10 * UPLOAD - Utility subroutine to dump memory to host
 11 * Mask I.D. at $BFD4 = $71E9
 12 **
 13 * Revision A -
 14 *
 15 * Fixed bug in PROGRAM routine where the first byte
 16 * programmed into the EPROM was not transmitted for
 17 * verify.
 18 * Also added to PROGRAM routine a skip of bytes
 19 * which were already programmed to the value desired.
 20 *
 21 * This new version allows variable length download
 22 * by quitting reception of characters when an idle
 23 * of at least four character times occurs
 24 *
 25 **
 26
 27 * EQUATES FOR USE WITH INDEX OFFSET = $1000
 28 *
 29 0008 PORTD EQU $08
 30 000E TCNT EQU $0E
 31 0016 TOC1 EQU $16
 32 0023 TFLG1 EQU $23
 33 * BIT EQUATES FOR TFLG1
 34 0080 OC1F EQU $80
 35 *
 36 0028 SPCR EQU $28 (FOR DWOM BIT)
 37 002B BAUD EQU $2B
 38 002D SCCR2 EQU $2D
 39 002E SCSR EQU $2E
 40 002F SCDAT EQU $2F
 41 003B PPROG EQU $3B
 42 * BIT EQUATES FOR PPROG
 43 0020 ELAT EQU $20
 44 0001 EPGM EQU $01
 45 *
 46
AN1060 — Rev. 1.0

MOTOROLA 41

Application Note
 47 * MEMORY CONFIGURATION EQUATES
 48 *
 49 B600 EEPMSTR EQU $B600 Start of EEPROM
 50 B7FF EEPMEND EQU $B7FF End of EEPROM
 51 *
 52 D000 EPRMSTR EQU $D000 Start of EPROM
 53 FFFF EPRMEND EQU $FFFF End of EPROM
 54 *
 55 0000 RAMSTR EQU $0000
 56 01FF RAMEND EQU $01FF
 57
 58 * DELAY CONSTANTS
 59 *
 60 0DB0 DELAYS EQU 3504 Delay at slow baud
 61 021B DELAYF EQU 539 Delay at fast baud
 62 *
 63 1068 PROGDEL EQU 4200 2 ms programming delay
 64 * At 2.1 MHz
 65
 66 **
 67 BF00 ORG $BF00
 68 **
 69
 70 * Next two instructions provide a predictable place
 71 * to call PROGRAM and UPLOAD even if the routines
 72 * change size in future versions.
 73 *
 74 BF00 7EBF13 PROGRAM JMP PRGROUT EPROM programming utility
 75 BF03 UPLOAD EQU * Upload utility
 76
 77 **
 78 * UPLOAD - Utility subroutine to send data from
 79 * inside the MCU to the host via the SCI interface.
 80 * Prior to calling UPLOAD set baud rate, turn on SCI
 81 * and set Y=first address to upload.
 82 * Bootloader leaves baud set, SCI enabled, and
 83 * Y pointing at EPROM start ($D000) so these default
 84 * values do not have to be changed typically.
 85 * Consecutive locations are sent via SCI in an
 86 * infinite loop. Reset stops the upload process.
 87 **
 88 BF03 CE1000 LDX #$1000 Point to internal registers
 89 BF06 18A600 UPLOOP LDAA 0,Y Read byte
 90 BF09 1F2E80FC BRCLR SCSR,X $80 * Wait for TDRE
 91 BF0D A72F STAA SCDAT,X Send it
 92 BF0F 1808 INY
 93 BF11 20F3 BRA UPLOOP Next...
 94
AN1060 — Rev. 1.0

42 MOTOROLA

Application Note
Listing 3. MC68HC711E9 Bootloader ROM
 95 **
 96 * PROGRAM - Utility subroutine to program EPROM.
 97 * Prior to calling PROGRAM set baud rate, turn on SCI
 98 * set X=2ms prog delay constant, and set Y=first
 99 * address to program. SP must point to RAM.
100 * Bootloader leaves baud set, SCI enabled, X=4200
101 * and Y pointing at EPROM start ($D000) so these
102 * default values don't have to be changed typically.
103 * Delay constant in X should be equivalent to 2 ms
104 * at 2.1 MHz X=4200; at 1 MHz X=2000.
105 * An external voltage source is required for EPROM
106 * programming.
107 * This routine uses 2 bytes of stack space
108 * Routine does not return. Reset to exit.
109 **
110 BF13 PRGROUT EQU *
111 BF13 3C PSHX Save program delay constant
112 BF14 CE1000 LDX #$1000 Point to internal registers
113 BF17
114 * Send $FF to indicate ready for program data
115
116 BF17 1F2E80FC BRCLR SCSR,X $80 * Wait for TDRE
117 BF1B 86FF LDAA #$FF
118 BF1D A72F STAA SCDAT,X
119
120 BF1F WAIT1 EQU *
121 BF1F 1F2E20FC BRCLR SCSR,X $20 * Wait for RDRF
122 BF23 E62F LDAB SCDAT,X Get received byte
123 BF25 18E100 CMPB $0,Y See if already programmed
124 BF28 271D BEQ DONEIT If so, skip prog cycle
125 BF2A 8620 LDAA #ELAT Put EPROM in prog mode
126 BF2C A73B STAA PPROG,X
127 BF2E 18E700 STAB 0,Y Write the data
128 BF31 8621 LDAA #ELAT+EPGM
129 BF33 A73B STAA PPROG,X Turn on prog voltage
130 BF35 32 PULA Pull delay constant
131 BF36 33 PULB into D-reg
132 BF37 37 PSHB But also keep delay
133 BF38 36 PSHA keep delay on stack
134 BF39 E30E ADDD TCNT,X Delay const + present TCNT
135 BF3B ED16 STD TOC1,X Schedule OC1 (2ms delay)
136 BF3D 8680 LDAA #OC1F
137 BF3F A723 STAA TFLG1,X Clear any previous flag
138
139 BF41 1F2380FC BRCLR TFLG1,X OC1F * Wait for delay to expire
140 BF45 6F3B CLR PPROG,X Turn off prog voltage
141 *
142 BF47 DONEIT EQU *
143 BF47 1F2E80FC BRCLR SCSR,X $80 * Wait for TDRE
144 BF4B 18A600 LDAA $0,Y Read from EPROM and...
145 BF4E A72F STAA SCDAT,X Xmit for verify
146 BF50 1808 INY Point at next location
147 BF52 20CB BRA WAIT1 Back to top for next
148 * Loops indefinitely as long as more data sent.
149
AN1060 — Rev. 1.0

MOTOROLA 43

Application Note
150 **
151 * Main bootloader starts here
152 **
153 * RESET vector points to here
154
155 BF54 BEGIN EQU *
156 BF54 8E01FF LDS #RAMEND Initialize stack pntr
157 BF57 CE1000 LDX #$1000 Point at internal regs
158 BF5A 1C2820 BSET SPCR,X $20 Select port D wire-OR mode
159 BF5D CCA20C LDD #$A20C BAUD in A, SCCR2 in B
160 BF60 A72B STAA BAUD,X SCPx = 4, SCRx = 4
161 * Writing 1 to MSB of BAUD resets count chain
162 BF62 E72D STAB SCCR2,X Rx and Tx Enabled
163 BF64 CC021B LDD #DELAYF Delay for fast baud rate
164 BF67 ED16 STD TOC1,X Set as default delay
165
166 * Send BREAK to signal ready for download
167 BF69 1C2D01 BSET SCCR2,X $01 Set send break bit
168 BF6C 1E0801FC BRSET PORTD,X $01 * Wait for RxD pin to go low
169 BF70 1D2D01 BCLR SCCR2,X $01 Clear send break bit
170 BF73
171 BF73 1F2E20FC BRCLR SCSR,X $20 * Wait for RDRF
172 BF77 A62F LDAA SCDAT,X Read data
173 * Data will be $00 if BREAK OR $00 received
174 BF79 2603 BNE NOTZERO Bypass JMP if not 0
175 BF7B 7EB600 JMP EEPMSTR Jump to EEPROM if it was 0
176 BF7E NOTZERO EQU *
177 BF7E 81FF CMPA #$FF $FF will be seen as $FF
178 BF80 2708 BEQ BAUDOK If baud was correct
179 * Or else change to 104 (13 & 8) 1200 @ 2MHZ
180 BF82 1C2B33 BSET BAUD,X $33 Works because $22 -> $33
181 BF85 CC0DB0 LDD #DELAYS And switch to slower...
182 BF88 ED16 STD TOC1,X delay constant
183 BF8A BAUDOK EQU *
184 BF8A 18CE0000 LDY #RAMSTR Point at start of RAM
185
186 BF8E WAIT EQU *
187 BF8E EC16 LDD TOC1,X Move delay constant to D
188 BF90 WTLOOP EQU *
189 BF90 1E2E2007 BRSET SCSR,X $20 NEWONE Exit loop if RDRF set
190 BF94 8F XGDX Swap delay count to X
191 BF95 09 DEX Decrement count
192 BF96 8F XGDX Swap back to D
193 BF97 26F7 BNE WTLOOP Loop if not timed out
194 BF99 200F BRA STAR Quit download on timeout
195
196 BF9B NEWONE EQU *
197 BF9B A62F LDAA SCDAT,X Get received data
198 BF9D 18A700 STAA $00,Y Store to next RAM location
199 BFA0 A72F STAA SCDAT,X Transmit it for handshake
200 BFA2 1808 INY Point at next RAM location
201 BFA4 188C0200 CPY #RAMEND+1 See if past end
202 BFA8 26E4 BNE WAIT If not, Get another
AN1060 — Rev. 1.0

44 MOTOROLA

Application Note
Listing 3. MC68HC711E9 Bootloader ROM
203
204 BFAA STAR EQU *
205 BFAA CE1068 LDX #PROGDEL Init X with programming delay
206 BFAD 18CED000 LDY #EPRMSTR Init Y with EPROM start addr
207 BFB1 7E0000 JMP RAMSTR ** EXIT to start of RAM **
208 BFB4
209 **
210 * Block fill unused bytes with zeros
211
212 BFB4 000000000000 BSZ $BFD1-*
 000000000000
 000000000000
 000000000000
 0000000000
213
214 **
215 * Boot ROM revision level in ASCII
216 * (ORG $BFD1)
217 BFD1 41 FCC "A"
218 **
219 * Mask set I.D. ($0000 FOR EPROM PARTS)
220 * (ORG $BFD2)
221 BFD2 0000 FDB $0000
222 **
223 * '711E9 I.D. - Can be used to determine MCU type
224 * (ORG $BFD4)
225 BFD4 71E9 FDB $71E9
226
227 **
228 * VECTORS - point to RAM for pseudo-vector JUMPs
229
230 BFD6 00C4 FDB $100-60 SCI
231 BFD8 00C7 FDB $100-57 SPI
232 BFDA 00CA FDB $100-54 PULSE ACCUM INPUT EDGE
233 BFDC 00CD FDB $100-51 PULSE ACCUM OVERFLOW
234 BFDE 00D0 FDB $100-48 TIMER OVERFLOW
235 BFE0 00D3 FDB $100-45 TIMER OUTPUT COMPARE 5
236 BFE2 00D6 FDB $100-42 TIMER OUTPUT COMPARE 4
237 BFE4 00D9 FDB $100-39 TIMER OUTPUT COMPARE 3
238 BFE6 00DC FDB $100-36 TIMER OUTPUT COMPARE 2
239 BFE8 00DF FDB $100-33 TIMER OUTPUT COMPARE 1
240 BFEA 00E2 FDB $100-30 TIMER INPUT CAPTURE 3
241 BFEC 00E5 FDB $100-27 TIMER INPUT CAPTURE 2
242 BFEE 00E8 FDB $100-24 TIMER INPUT CAPTURE 1
243 BFF0 00EB FDB $100-21 REAL TIME INT
244 BFF2 00EE FDB $100-18 IRQ
245 BFF4 00F1 FDB $100-15 XIRQ
246 BFF6 00F4 FDB $100-12 SWI
247 BFF8 00F7 FDB $100-9 ILLEGAL OP-CODE
248 BFFA 00FA FDB $100-6 COP FAIL
249 BFFC 00FD FDB $100-3 CLOCK MONITOR
250 BFFE BF54 FDB BEGIN RESET
251 C000 END
AN1060 — Rev. 1.0

MOTOROLA 45

Application Note
Symbol Table:

Symbol Name Value Def.# Line Number Cross Reference

BAUD 002B *00037 00160 00180
BAUDOK BF8A *00183 00178
BEGIN BF54 *00155 00250
DELAYF 021B *00061 00163
DELAYS 0DB0 *00060 00181
DONEIT BF47 *00142 00124
EEPMEND B7FF *00050
EEPMSTR B600 *00049 00175
ELAT 0020 *00043 00125 00128
EPGM 0001 *00044 00128
EPRMEND FFFF *00053
EPRMSTR D000 *00052 00206
NEWONE BF9B *00196 00189
NOTZERO BF7E *00176 00174
OC1F 0080 *00034 00136 00139
PORTD 0008 *00029 00168
PPROG 003B *00041 00126 00129 00140
PRGROUT BF13 *00110 00074
PROGDEL 1068 *00063 00205
PROGRAM BF00 *00074
RAMEND 01FF *00056 00156 00201
RAMSTR 0000 *00055 00184 00207
SCCR2 002D *00038 00162 00167 00169
SCDAT 002F *00040 00091 00118 00122 00145 00172 00197 00199
SCSR 002E *00039 00090 00116 00121 00143 00171 00189
SPCR 0028 *00036 00158
STAR BFAA *00204 00194
TCNT 000E *00030 00134
TFLG1 0023 *00032 00137 00139
TOC1 0016 *00031 00135 00164 00182 00187
UPLOAD BF03 *00075
UPLOOP BF06 *00089 00093
WAIT BF8E *00186 00202
WAIT1 BF1F *00120 00147
WTLOOP BF90 *00188 00193

 Errors: None
 Labels: 35
 Last Program Address: $BFFF
 Last Storage Address: $0000
 Program Bytes: $0100 256
 Storage Bytes: $0000 0
AN1060 — Rev. 1.0

46 MOTOROLA

Application Note
Listing 3. MC68HC711E9 Bootloader ROM
AN1060 — Rev. 1.0

MOTOROLA 47

N

O
N

-
D

I
S

C
L

O
S

U
R

E

A
G

R
E

E
M

E
N

T

R
E

Q
U

I
R

E
D

Application Note
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its
products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts.
Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a
situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the
design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution, P.O. Box 5405, Denver, Colorado 80217. 1-303-675-2140

or 1-800-441-2447. Customer Focus Center, 1-800-521-6274
JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3-20-1, Minami-Azabu, Minato-ku, Tokyo 106-8573 Japan.

81-3-3440-8573
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate,

Tai Po, N.T., Hong Kong. 852-26668334
Mfax™, Motorola Fax Back System: RMFAX0@email.sps.mot.com; http://sps.motorola.com/mfax/;

TOUCHTONE, 1-602-244-6609; US and Canada ONLY, 1-800-774-1848
HOME PAGE: http://motorola.com/sps/
AN1060/D

© Motorola, Inc., 1999

Mfax is a trademark of Motorola, Inc.

	Introduction
	Basic Bootstrap Mode
	Bootstrap Mode Logic
	Boot ROM Firmware
	Automatic Selection of Baud Rate
	Main Bootloader Program
	UPLOAD Utility
	EPROM Programming Utility
	Allowing for Bootstrap Mode
	Mode Select Pins
	RESET
	RxD Pin
	TxD Pin
	Other

	Driving Boot Mode from Another M68HC11
	Listing 1. MCU-to-MCU Duplicator Program
	Driving Boot Mode from a Personal Computer
	Hardware
	Software
	Modifications
	Operation

	Listing 2. BASIC Program for Personal Computer
	Common Bootstrap Mode Problems
	Reset Conditions vs. Conditions as Bootloaded Program Starts
	Connecting RxD to VSS Does Not Cause the SCI to Receive a Break
	$FF Character Is Required before Loading into RAM
	Original M68HC11 Versions Required Exactly 256 Bytes to be Downloaded to RAM
	Variable-Length Download
	EPROM/OTP Versions of M68HC11 Have an EPROM Emulation Mode
	Bootloading a Program to Perform a ROM Checksum
	Inherent Delays Caused by Double Buffering of SCI Data

	Boot ROM Variations
	Commented Boot ROM Listing
	Listing 3. MC68HC711E9 Bootloader ROM

